File size: 4,665 Bytes
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


class EPE(nn.Module):
    def __init__(self):
        super(EPE, self).__init__()

    def forward(self, flow, gt, loss_mask):
        loss_map = (flow - gt.detach()) ** 2
        loss_map = (loss_map.sum(1, True) + 1e-6) ** 0.5
        return loss_map * loss_mask


class Ternary(nn.Module):
    def __init__(self):
        super(Ternary, self).__init__()
        patch_size = 7
        out_channels = patch_size * patch_size
        self.w = np.eye(out_channels).reshape((patch_size, patch_size, 1, out_channels))
        self.w = np.transpose(self.w, (3, 2, 0, 1))
        self.w = torch.tensor(self.w).float().to(device)

    def transform(self, img):
        patches = F.conv2d(img, self.w, padding=3, bias=None)
        transf = patches - img
        transf_norm = transf / torch.sqrt(0.81 + transf**2)
        return transf_norm

    def rgb2gray(self, rgb):
        r, g, b = rgb[:, 0:1, :, :], rgb[:, 1:2, :, :], rgb[:, 2:3, :, :]
        gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
        return gray

    def hamming(self, t1, t2):
        dist = (t1 - t2) ** 2
        dist_norm = torch.mean(dist / (0.1 + dist), 1, True)
        return dist_norm

    def valid_mask(self, t, padding):
        n, _, h, w = t.size()
        inner = torch.ones(n, 1, h - 2 * padding, w - 2 * padding).type_as(t)
        mask = F.pad(inner, [padding] * 4)
        return mask

    def forward(self, img0, img1):
        img0 = self.transform(self.rgb2gray(img0))
        img1 = self.transform(self.rgb2gray(img1))
        return self.hamming(img0, img1) * self.valid_mask(img0, 1)


class SOBEL(nn.Module):
    def __init__(self):
        super(SOBEL, self).__init__()
        self.kernelX = torch.tensor(
            [
                [1, 0, -1],
                [2, 0, -2],
                [1, 0, -1],
            ]
        ).float()
        self.kernelY = self.kernelX.clone().T
        self.kernelX = self.kernelX.unsqueeze(0).unsqueeze(0).to(device)
        self.kernelY = self.kernelY.unsqueeze(0).unsqueeze(0).to(device)

    def forward(self, pred, gt):
        N, C, H, W = pred.shape[0], pred.shape[1], pred.shape[2], pred.shape[3]
        img_stack = torch.cat([pred.reshape(N * C, 1, H, W), gt.reshape(N * C, 1, H, W)], 0)
        sobel_stack_x = F.conv2d(img_stack, self.kernelX, padding=1)
        sobel_stack_y = F.conv2d(img_stack, self.kernelY, padding=1)
        pred_X, gt_X = sobel_stack_x[: N * C], sobel_stack_x[N * C :]
        pred_Y, gt_Y = sobel_stack_y[: N * C], sobel_stack_y[N * C :]

        L1X, L1Y = torch.abs(pred_X - gt_X), torch.abs(pred_Y - gt_Y)
        loss = L1X + L1Y
        return loss


class MeanShift(nn.Conv2d):
    def __init__(self, data_mean, data_std, data_range=1, norm=True):
        c = len(data_mean)
        super(MeanShift, self).__init__(c, c, kernel_size=1)
        std = torch.Tensor(data_std)
        self.weight.data = torch.eye(c).view(c, c, 1, 1)
        if norm:
            self.weight.data.div_(std.view(c, 1, 1, 1))
            self.bias.data = -1 * data_range * torch.Tensor(data_mean)
            self.bias.data.div_(std)
        else:
            self.weight.data.mul_(std.view(c, 1, 1, 1))
            self.bias.data = data_range * torch.Tensor(data_mean)
        self.requires_grad = False


class VGGPerceptualLoss(torch.nn.Module):
    def __init__(self, rank=0):
        super(VGGPerceptualLoss, self).__init__()
        blocks = []
        pretrained = True
        self.vgg_pretrained_features = models.vgg19(pretrained=pretrained).features
        self.normalize = MeanShift([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], norm=True).cuda()
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, X, Y, indices=None):
        X = self.normalize(X)
        Y = self.normalize(Y)
        indices = [2, 7, 12, 21, 30]
        weights = [1.0 / 2.6, 1.0 / 4.8, 1.0 / 3.7, 1.0 / 5.6, 10 / 1.5]
        k = 0
        loss = 0
        for i in range(indices[-1]):
            X = self.vgg_pretrained_features[i](X)
            Y = self.vgg_pretrained_features[i](Y)
            if (i + 1) in indices:
                loss += weights[k] * (X - Y.detach()).abs().mean() * 0.1
                k += 1
        return loss


if __name__ == "__main__":
    img0 = torch.zeros(3, 3, 256, 256).float().to(device)
    img1 = torch.tensor(np.random.normal(0, 1, (3, 3, 256, 256))).float().to(device)
    ternary_loss = Ternary()
    print(ternary_loss(img0, img1).shape)