|
import torch |
|
import torch.nn.functional as F |
|
from math import exp |
|
import numpy as np |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
def gaussian(window_size, sigma): |
|
gauss = torch.Tensor([exp(-((x - window_size // 2) ** 2) / float(2 * sigma**2)) for x in range(window_size)]) |
|
return gauss / gauss.sum() |
|
|
|
|
|
def create_window(window_size, channel=1): |
|
_1D_window = gaussian(window_size, 1.5).unsqueeze(1) |
|
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0).to(device) |
|
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous() |
|
return window |
|
|
|
|
|
def create_window_3d(window_size, channel=1): |
|
_1D_window = gaussian(window_size, 1.5).unsqueeze(1) |
|
_2D_window = _1D_window.mm(_1D_window.t()) |
|
_3D_window = _2D_window.unsqueeze(2) @ (_1D_window.t()) |
|
window = _3D_window.expand(1, channel, window_size, window_size, window_size).contiguous().to(device) |
|
return window |
|
|
|
|
|
def ssim(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None): |
|
|
|
if val_range is None: |
|
if torch.max(img1) > 128: |
|
max_val = 255 |
|
else: |
|
max_val = 1 |
|
|
|
if torch.min(img1) < -0.5: |
|
min_val = -1 |
|
else: |
|
min_val = 0 |
|
L = max_val - min_val |
|
else: |
|
L = val_range |
|
|
|
padd = 0 |
|
(_, channel, height, width) = img1.size() |
|
if window is None: |
|
real_size = min(window_size, height, width) |
|
window = create_window(real_size, channel=channel).to(img1.device) |
|
|
|
|
|
|
|
mu1 = F.conv2d(F.pad(img1, (5, 5, 5, 5), mode="replicate"), window, padding=padd, groups=channel) |
|
mu2 = F.conv2d(F.pad(img2, (5, 5, 5, 5), mode="replicate"), window, padding=padd, groups=channel) |
|
|
|
mu1_sq = mu1.pow(2) |
|
mu2_sq = mu2.pow(2) |
|
mu1_mu2 = mu1 * mu2 |
|
|
|
sigma1_sq = F.conv2d(F.pad(img1 * img1, (5, 5, 5, 5), "replicate"), window, padding=padd, groups=channel) - mu1_sq |
|
sigma2_sq = F.conv2d(F.pad(img2 * img2, (5, 5, 5, 5), "replicate"), window, padding=padd, groups=channel) - mu2_sq |
|
sigma12 = F.conv2d(F.pad(img1 * img2, (5, 5, 5, 5), "replicate"), window, padding=padd, groups=channel) - mu1_mu2 |
|
|
|
C1 = (0.01 * L) ** 2 |
|
C2 = (0.03 * L) ** 2 |
|
|
|
v1 = 2.0 * sigma12 + C2 |
|
v2 = sigma1_sq + sigma2_sq + C2 |
|
cs = torch.mean(v1 / v2) |
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2) |
|
|
|
if size_average: |
|
ret = ssim_map.mean() |
|
else: |
|
ret = ssim_map.mean(1).mean(1).mean(1) |
|
|
|
if full: |
|
return ret, cs |
|
return ret |
|
|
|
|
|
def ssim_matlab(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None): |
|
|
|
if val_range is None: |
|
if torch.max(img1) > 128: |
|
max_val = 255 |
|
else: |
|
max_val = 1 |
|
|
|
if torch.min(img1) < -0.5: |
|
min_val = -1 |
|
else: |
|
min_val = 0 |
|
L = max_val - min_val |
|
else: |
|
L = val_range |
|
|
|
padd = 0 |
|
(_, _, height, width) = img1.size() |
|
if window is None: |
|
real_size = min(window_size, height, width) |
|
window = create_window_3d(real_size, channel=1).to(img1.device, dtype=img1.dtype) |
|
|
|
|
|
img1 = img1.unsqueeze(1) |
|
img2 = img2.unsqueeze(1) |
|
|
|
mu1 = F.conv3d(F.pad(img1, (5, 5, 5, 5, 5, 5), mode="replicate"), window, padding=padd, groups=1) |
|
mu2 = F.conv3d(F.pad(img2, (5, 5, 5, 5, 5, 5), mode="replicate"), window, padding=padd, groups=1) |
|
|
|
mu1_sq = mu1.pow(2) |
|
mu2_sq = mu2.pow(2) |
|
mu1_mu2 = mu1 * mu2 |
|
|
|
sigma1_sq = F.conv3d(F.pad(img1 * img1, (5, 5, 5, 5, 5, 5), "replicate"), window, padding=padd, groups=1) - mu1_sq |
|
sigma2_sq = F.conv3d(F.pad(img2 * img2, (5, 5, 5, 5, 5, 5), "replicate"), window, padding=padd, groups=1) - mu2_sq |
|
sigma12 = F.conv3d(F.pad(img1 * img2, (5, 5, 5, 5, 5, 5), "replicate"), window, padding=padd, groups=1) - mu1_mu2 |
|
|
|
C1 = (0.01 * L) ** 2 |
|
C2 = (0.03 * L) ** 2 |
|
|
|
v1 = 2.0 * sigma12 + C2 |
|
v2 = sigma1_sq + sigma2_sq + C2 |
|
cs = torch.mean(v1 / v2) |
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2) |
|
|
|
if size_average: |
|
ret = ssim_map.mean() |
|
else: |
|
ret = ssim_map.mean(1).mean(1).mean(1) |
|
|
|
if full: |
|
return ret, cs |
|
return ret |
|
|
|
|
|
def msssim(img1, img2, window_size=11, size_average=True, val_range=None, normalize=False): |
|
device = img1.device |
|
weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(device) |
|
levels = weights.size()[0] |
|
mssim = [] |
|
mcs = [] |
|
for _ in range(levels): |
|
sim, cs = ssim(img1, img2, window_size=window_size, size_average=size_average, full=True, val_range=val_range) |
|
mssim.append(sim) |
|
mcs.append(cs) |
|
|
|
img1 = F.avg_pool2d(img1, (2, 2)) |
|
img2 = F.avg_pool2d(img2, (2, 2)) |
|
|
|
mssim = torch.stack(mssim) |
|
mcs = torch.stack(mcs) |
|
|
|
|
|
if normalize: |
|
mssim = (mssim + 1) / 2 |
|
mcs = (mcs + 1) / 2 |
|
|
|
pow1 = mcs**weights |
|
pow2 = mssim**weights |
|
|
|
output = torch.prod(pow1[:-1] * pow2[-1]) |
|
return output |
|
|
|
|
|
|
|
class SSIM(torch.nn.Module): |
|
def __init__(self, window_size=11, size_average=True, val_range=None): |
|
super(SSIM, self).__init__() |
|
self.window_size = window_size |
|
self.size_average = size_average |
|
self.val_range = val_range |
|
|
|
|
|
self.channel = 3 |
|
self.window = create_window(window_size, channel=self.channel) |
|
|
|
def forward(self, img1, img2): |
|
(_, channel, _, _) = img1.size() |
|
|
|
if channel == self.channel and self.window.dtype == img1.dtype: |
|
window = self.window |
|
else: |
|
window = create_window(self.window_size, channel).to(img1.device).type(img1.dtype) |
|
self.window = window |
|
self.channel = channel |
|
|
|
_ssim = ssim(img1, img2, window=window, window_size=self.window_size, size_average=self.size_average) |
|
dssim = (1 - _ssim) / 2 |
|
return dssim |
|
|
|
|
|
class MSSSIM(torch.nn.Module): |
|
def __init__(self, window_size=11, size_average=True, channel=3): |
|
super(MSSSIM, self).__init__() |
|
self.window_size = window_size |
|
self.size_average = size_average |
|
self.channel = channel |
|
|
|
def forward(self, img1, img2): |
|
return msssim(img1, img2, window_size=self.window_size, size_average=self.size_average) |
|
|