|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from .warplayer import warp |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): |
|
return nn.Sequential( |
|
nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
bias=True, |
|
), |
|
nn.PReLU(out_planes), |
|
) |
|
|
|
|
|
def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): |
|
return nn.Sequential( |
|
nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(out_planes), |
|
nn.PReLU(out_planes), |
|
) |
|
|
|
|
|
class IFBlock(nn.Module): |
|
def __init__(self, in_planes, c=64): |
|
super(IFBlock, self).__init__() |
|
self.conv0 = nn.Sequential( |
|
conv(in_planes, c // 2, 3, 2, 1), |
|
conv(c // 2, c, 3, 2, 1), |
|
) |
|
self.convblock0 = nn.Sequential(conv(c, c), conv(c, c)) |
|
self.convblock1 = nn.Sequential(conv(c, c), conv(c, c)) |
|
self.convblock2 = nn.Sequential(conv(c, c), conv(c, c)) |
|
self.convblock3 = nn.Sequential(conv(c, c), conv(c, c)) |
|
self.conv1 = nn.Sequential( |
|
nn.ConvTranspose2d(c, c // 2, 4, 2, 1), |
|
nn.PReLU(c // 2), |
|
nn.ConvTranspose2d(c // 2, 4, 4, 2, 1), |
|
) |
|
self.conv2 = nn.Sequential( |
|
nn.ConvTranspose2d(c, c // 2, 4, 2, 1), |
|
nn.PReLU(c // 2), |
|
nn.ConvTranspose2d(c // 2, 1, 4, 2, 1), |
|
) |
|
|
|
def forward(self, x, flow, scale=1): |
|
x = F.interpolate( |
|
x, scale_factor=1.0 / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False |
|
) |
|
flow = ( |
|
F.interpolate( |
|
flow, scale_factor=1.0 / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False |
|
) |
|
* 1.0 |
|
/ scale |
|
) |
|
feat = self.conv0(torch.cat((x, flow), 1)) |
|
feat = self.convblock0(feat) + feat |
|
feat = self.convblock1(feat) + feat |
|
feat = self.convblock2(feat) + feat |
|
feat = self.convblock3(feat) + feat |
|
flow = self.conv1(feat) |
|
mask = self.conv2(feat) |
|
flow = ( |
|
F.interpolate(flow, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) |
|
* scale |
|
) |
|
mask = F.interpolate( |
|
mask, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False |
|
) |
|
return flow, mask |
|
|
|
|
|
class IFNet(nn.Module): |
|
def __init__(self): |
|
super(IFNet, self).__init__() |
|
self.block0 = IFBlock(7 + 4, c=90) |
|
self.block1 = IFBlock(7 + 4, c=90) |
|
self.block2 = IFBlock(7 + 4, c=90) |
|
self.block_tea = IFBlock(10 + 4, c=90) |
|
|
|
|
|
|
|
def forward(self, x, scale_list=[4, 2, 1], training=False): |
|
if training == False: |
|
channel = x.shape[1] // 2 |
|
img0 = x[:, :channel] |
|
img1 = x[:, channel:] |
|
flow_list = [] |
|
merged = [] |
|
mask_list = [] |
|
warped_img0 = img0 |
|
warped_img1 = img1 |
|
flow = (x[:, :4]).detach() * 0 |
|
mask = (x[:, :1]).detach() * 0 |
|
loss_cons = 0 |
|
block = [self.block0, self.block1, self.block2] |
|
for i in range(3): |
|
f0, m0 = block[i](torch.cat((warped_img0[:, :3], warped_img1[:, :3], mask), 1), flow, scale=scale_list[i]) |
|
f1, m1 = block[i]( |
|
torch.cat((warped_img1[:, :3], warped_img0[:, :3], -mask), 1), |
|
torch.cat((flow[:, 2:4], flow[:, :2]), 1), |
|
scale=scale_list[i], |
|
) |
|
flow = flow + (f0 + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2 |
|
mask = mask + (m0 + (-m1)) / 2 |
|
mask_list.append(mask) |
|
flow_list.append(flow) |
|
warped_img0 = warp(img0, flow[:, :2]) |
|
warped_img1 = warp(img1, flow[:, 2:4]) |
|
merged.append((warped_img0, warped_img1)) |
|
""" |
|
c0 = self.contextnet(img0, flow[:, :2]) |
|
c1 = self.contextnet(img1, flow[:, 2:4]) |
|
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1) |
|
res = tmp[:, 1:4] * 2 - 1 |
|
""" |
|
for i in range(3): |
|
mask_list[i] = torch.sigmoid(mask_list[i]) |
|
merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i]) |
|
|
|
return flow_list, mask_list[2], merged |
|
|