|
import importlib |
|
import math |
|
import os |
|
import random |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torchvision.utils import make_grid |
|
from transformers import PretrainedConfig |
|
|
|
|
|
def seed_everything(seed): |
|
os.environ["PL_GLOBAL_SEED"] = str(seed) |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
def is_torch2_available(): |
|
return hasattr(F, "scaled_dot_product_attention") |
|
|
|
|
|
def instantiate_from_config(config): |
|
if "target" not in config: |
|
if config == '__is_first_stage__' or config == "__is_unconditional__": |
|
return None |
|
raise KeyError("Expected key `target` to instantiate.") |
|
return get_obj_from_str(config["target"])(**config.get("params", {})) |
|
|
|
|
|
def get_obj_from_str(string, reload=False): |
|
module, cls = string.rsplit(".", 1) |
|
if reload: |
|
module_imp = importlib.import_module(module) |
|
importlib.reload(module_imp) |
|
return getattr(importlib.import_module(module, package=None), cls) |
|
|
|
|
|
def drop_seq_token(seq, drop_rate=0.5): |
|
idx = torch.randperm(seq.size(1)) |
|
num_keep_tokens = int(len(idx) * (1 - drop_rate)) |
|
idx = idx[:num_keep_tokens] |
|
seq = seq[:, idx] |
|
return seq |
|
|
|
|
|
def import_model_class_from_model_name_or_path( |
|
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" |
|
): |
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
pretrained_model_name_or_path, subfolder=subfolder, revision=revision |
|
) |
|
model_class = text_encoder_config.architectures[0] |
|
|
|
if model_class == "CLIPTextModel": |
|
from transformers import CLIPTextModel |
|
|
|
return CLIPTextModel |
|
elif model_class == "CLIPTextModelWithProjection": |
|
from transformers import CLIPTextModelWithProjection |
|
|
|
return CLIPTextModelWithProjection |
|
else: |
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
def resize_numpy_image_long(image, resize_long_edge=768): |
|
h, w = image.shape[:2] |
|
if max(h, w) <= resize_long_edge: |
|
return image |
|
k = resize_long_edge / max(h, w) |
|
h = int(h * k) |
|
w = int(w * k) |
|
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4) |
|
return image |
|
|
|
|
|
|
|
def img2tensor(imgs, bgr2rgb=True, float32=True): |
|
"""Numpy array to tensor. |
|
|
|
Args: |
|
imgs (list[ndarray] | ndarray): Input images. |
|
bgr2rgb (bool): Whether to change bgr to rgb. |
|
float32 (bool): Whether to change to float32. |
|
|
|
Returns: |
|
list[tensor] | tensor: Tensor images. If returned results only have |
|
one element, just return tensor. |
|
""" |
|
|
|
def _totensor(img, bgr2rgb, float32): |
|
if img.shape[2] == 3 and bgr2rgb: |
|
if img.dtype == 'float64': |
|
img = img.astype('float32') |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
img = torch.from_numpy(img.transpose(2, 0, 1)) |
|
if float32: |
|
img = img.float() |
|
return img |
|
|
|
if isinstance(imgs, list): |
|
return [_totensor(img, bgr2rgb, float32) for img in imgs] |
|
return _totensor(imgs, bgr2rgb, float32) |
|
|
|
|
|
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): |
|
"""Convert torch Tensors into image numpy arrays. |
|
|
|
After clamping to [min, max], values will be normalized to [0, 1]. |
|
|
|
Args: |
|
tensor (Tensor or list[Tensor]): Accept shapes: |
|
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); |
|
2) 3D Tensor of shape (3/1 x H x W); |
|
3) 2D Tensor of shape (H x W). |
|
Tensor channel should be in RGB order. |
|
rgb2bgr (bool): Whether to change rgb to bgr. |
|
out_type (numpy type): output types. If ``np.uint8``, transform outputs |
|
to uint8 type with range [0, 255]; otherwise, float type with |
|
range [0, 1]. Default: ``np.uint8``. |
|
min_max (tuple[int]): min and max values for clamp. |
|
|
|
Returns: |
|
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of |
|
shape (H x W). The channel order is BGR. |
|
""" |
|
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): |
|
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') |
|
|
|
if torch.is_tensor(tensor): |
|
tensor = [tensor] |
|
result = [] |
|
for _tensor in tensor: |
|
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) |
|
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) |
|
|
|
n_dim = _tensor.dim() |
|
if n_dim == 4: |
|
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() |
|
img_np = img_np.transpose(1, 2, 0) |
|
if rgb2bgr: |
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) |
|
elif n_dim == 3: |
|
img_np = _tensor.numpy() |
|
img_np = img_np.transpose(1, 2, 0) |
|
if img_np.shape[2] == 1: |
|
img_np = np.squeeze(img_np, axis=2) |
|
else: |
|
if rgb2bgr: |
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) |
|
elif n_dim == 2: |
|
img_np = _tensor.numpy() |
|
else: |
|
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}') |
|
if out_type == np.uint8: |
|
|
|
img_np = (img_np * 255.0).round() |
|
img_np = img_np.astype(out_type) |
|
result.append(img_np) |
|
if len(result) == 1: |
|
result = result[0] |
|
return result |
|
|