|
from .refine import * |
|
|
|
|
|
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1): |
|
return nn.Sequential( |
|
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1), |
|
nn.PReLU(out_planes), |
|
) |
|
|
|
|
|
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): |
|
return nn.Sequential( |
|
nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
bias=True, |
|
), |
|
nn.PReLU(out_planes), |
|
) |
|
|
|
|
|
class IFBlock(nn.Module): |
|
def __init__(self, in_planes, c=64): |
|
super(IFBlock, self).__init__() |
|
self.conv0 = nn.Sequential( |
|
conv(in_planes, c // 2, 3, 2, 1), |
|
conv(c // 2, c, 3, 2, 1), |
|
) |
|
self.convblock = nn.Sequential( |
|
conv(c, c), |
|
conv(c, c), |
|
conv(c, c), |
|
conv(c, c), |
|
conv(c, c), |
|
conv(c, c), |
|
conv(c, c), |
|
conv(c, c), |
|
) |
|
self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1) |
|
|
|
def forward(self, x, flow, scale): |
|
if scale != 1: |
|
x = F.interpolate(x, scale_factor=1.0 / scale, mode="bilinear", align_corners=False) |
|
if flow != None: |
|
flow = F.interpolate(flow, scale_factor=1.0 / scale, mode="bilinear", align_corners=False) * 1.0 / scale |
|
x = torch.cat((x, flow), 1) |
|
x = self.conv0(x) |
|
x = self.convblock(x) + x |
|
tmp = self.lastconv(x) |
|
tmp = F.interpolate(tmp, scale_factor=scale * 2, mode="bilinear", align_corners=False) |
|
flow = tmp[:, :4] * scale * 2 |
|
mask = tmp[:, 4:5] |
|
return flow, mask |
|
|
|
|
|
class IFNet(nn.Module): |
|
def __init__(self): |
|
super(IFNet, self).__init__() |
|
self.block0 = IFBlock(6, c=240) |
|
self.block1 = IFBlock(13 + 4, c=150) |
|
self.block2 = IFBlock(13 + 4, c=90) |
|
self.block_tea = IFBlock(16 + 4, c=90) |
|
self.contextnet = Contextnet() |
|
self.unet = Unet() |
|
|
|
def forward(self, x, scale=[4, 2, 1], timestep=0.5): |
|
img0 = x[:, :3] |
|
img1 = x[:, 3:6] |
|
gt = x[:, 6:] |
|
flow_list = [] |
|
merged = [] |
|
mask_list = [] |
|
warped_img0 = img0 |
|
warped_img1 = img1 |
|
flow = None |
|
loss_distill = 0 |
|
stu = [self.block0, self.block1, self.block2] |
|
for i in range(3): |
|
if flow != None: |
|
flow_d, mask_d = stu[i]( |
|
torch.cat((img0, img1, warped_img0, warped_img1, mask), 1), flow, scale=scale[i] |
|
) |
|
flow = flow + flow_d |
|
mask = mask + mask_d |
|
else: |
|
flow, mask = stu[i](torch.cat((img0, img1), 1), None, scale=scale[i]) |
|
mask_list.append(torch.sigmoid(mask)) |
|
flow_list.append(flow) |
|
warped_img0 = warp(img0, flow[:, :2]) |
|
warped_img1 = warp(img1, flow[:, 2:4]) |
|
merged_student = (warped_img0, warped_img1) |
|
merged.append(merged_student) |
|
if gt.shape[1] == 3: |
|
flow_d, mask_d = self.block_tea( |
|
torch.cat((img0, img1, warped_img0, warped_img1, mask, gt), 1), flow, scale=1 |
|
) |
|
flow_teacher = flow + flow_d |
|
warped_img0_teacher = warp(img0, flow_teacher[:, :2]) |
|
warped_img1_teacher = warp(img1, flow_teacher[:, 2:4]) |
|
mask_teacher = torch.sigmoid(mask + mask_d) |
|
merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (1 - mask_teacher) |
|
else: |
|
flow_teacher = None |
|
merged_teacher = None |
|
for i in range(3): |
|
merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i]) |
|
if gt.shape[1] == 3: |
|
loss_mask = ( |
|
((merged[i] - gt).abs().mean(1, True) > (merged_teacher - gt).abs().mean(1, True) + 0.01) |
|
.float() |
|
.detach() |
|
) |
|
loss_distill += (((flow_teacher.detach() - flow_list[i]) ** 2).mean(1, True) ** 0.5 * loss_mask).mean() |
|
c0 = self.contextnet(img0, flow[:, :2]) |
|
c1 = self.contextnet(img1, flow[:, 2:4]) |
|
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1) |
|
res = tmp[:, :3] * 2 - 1 |
|
merged[2] = torch.clamp(merged[2] + res, 0, 1) |
|
return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill |
|
|