JoPmt commited on
Commit
e8e67a1
1 Parent(s): a13051b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -20
app.py CHANGED
@@ -11,7 +11,7 @@ from moviepy import VideoFileClip
11
  from datetime import datetime, timedelta
12
  from huggingface_hub import hf_hub_download, snapshot_download, login
13
  HF_TOKEN=os.environ.get('HF_TOKEN')
14
- login(token=HF_TOKEN)
15
  import insightface
16
  from insightface.app import FaceAnalysis
17
  from facexlib.parsing import init_parsing_model
@@ -41,7 +41,7 @@ snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh
41
  model_path = "BestWishYsh/ConsisID-preview"
42
  lora_path = None
43
  lora_rank = 128
44
- dtype = torch.float16
45
 
46
  if os.path.exists(os.path.join(model_path, "transformer_ema")):
47
  subfolder = "transformer_ema"
@@ -139,15 +139,8 @@ def delete_old_files():
139
  if file_mtime < cutoff:
140
  os.remove(file_path)
141
  time.sleep(600)
142
-
143
- def infer(
144
- prompt: str,
145
- image_input: str,
146
- num_inference_steps: int,
147
- guidance_scale: float,
148
- seed: int = 42,
149
- progress=gr.Progress(track_tqdm=True),
150
- ):
151
  if seed == -1:
152
  seed = random.randint(0, 2**8 - 1)
153
 
@@ -178,24 +171,19 @@ def infer(
178
  prompt=prompt,
179
  image=image,
180
  num_videos_per_prompt=1,
181
- num_inference_steps=num_inference_steps,
182
  num_frames=49,
183
  use_dynamic_cfg=False,
184
- guidance_scale=guidance_scale,
185
  generator=generator,
186
  id_vit_hidden=id_vit_hidden,
187
  id_cond=id_cond,
188
  kps_cond=kps_cond,
189
  output_type="pt",
190
  ).frames
191
-
192
- ##free_memory()
193
- return video_pt, seed
194
- ##threading.Thread(target=delete_old_files, daemon=True).start()
195
- @spaces.GPU(duration=70)
196
- def generate(prompt,image_input,seed_value,scale_status,rife_status,progress=gr.Progress(track_tqdm=True)):
197
 
198
- latents, seed = infer(prompt,image_input,num_inference_steps=4,guidance_scale=7.0,seed=seed_value,progress=progress,)
 
199
  if scale_status:
200
  latents = upscale_batch_and_concatenate(upscale_model, latents, device)
201
  if rife_status:
@@ -219,6 +207,8 @@ def generate(prompt,image_input,seed_value,scale_status,rife_status,progress=gr.
219
 
220
  return video_path, video_update, gif_update, seed_update
221
 
 
 
222
 
223
  examples_images = [
224
  ["asserts/example_images/1.png", "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon."],
 
11
  from datetime import datetime, timedelta
12
  from huggingface_hub import hf_hub_download, snapshot_download, login
13
  HF_TOKEN=os.environ.get('HF_TOKEN')
14
+ ##login(token=HF_TOKEN)
15
  import insightface
16
  from insightface.app import FaceAnalysis
17
  from facexlib.parsing import init_parsing_model
 
41
  model_path = "BestWishYsh/ConsisID-preview"
42
  lora_path = None
43
  lora_rank = 128
44
+ dtype = torch.bfloat16
45
 
46
  if os.path.exists(os.path.join(model_path, "transformer_ema")):
47
  subfolder = "transformer_ema"
 
139
  if file_mtime < cutoff:
140
  os.remove(file_path)
141
  time.sleep(600)
142
+ @spaces.GPU(duration=70)
143
+ def infer(prompt,image_input,seed_value,scale_status,rife_status,progress=gr.Progress(track_tqdm=True)):
 
 
 
 
 
 
 
144
  if seed == -1:
145
  seed = random.randint(0, 2**8 - 1)
146
 
 
171
  prompt=prompt,
172
  image=image,
173
  num_videos_per_prompt=1,
174
+ num_inference_steps=4,
175
  num_frames=49,
176
  use_dynamic_cfg=False,
177
+ guidance_scale=7.0,
178
  generator=generator,
179
  id_vit_hidden=id_vit_hidden,
180
  id_cond=id_cond,
181
  kps_cond=kps_cond,
182
  output_type="pt",
183
  ).frames
 
 
 
 
 
 
184
 
185
+ latents = video_pt
186
+ ##free_memory()
187
  if scale_status:
188
  latents = upscale_batch_and_concatenate(upscale_model, latents, device)
189
  if rife_status:
 
207
 
208
  return video_path, video_update, gif_update, seed_update
209
 
210
+ ##return video_pt, seed
211
+ ##threading.Thread(target=delete_old_files, daemon=True).start()
212
 
213
  examples_images = [
214
  ["asserts/example_images/1.png", "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon."],