import math import torch import torch.nn as nn # FFN def FeedForward(dim, mult=4): inner_dim = int(dim * mult) return nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, inner_dim, bias=False), nn.GELU(), nn.Linear(inner_dim, dim, bias=False), ) def reshape_tensor(x, heads): bs, length, width = x.shape # (bs, length, width) --> (bs, length, n_heads, dim_per_head) x = x.view(bs, length, heads, -1) # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) x = x.transpose(1, 2) # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head) x = x.reshape(bs, heads, length, -1) return x class PerceiverAttention(nn.Module): def __init__(self, *, dim, dim_head=64, heads=8, kv_dim=None): super().__init__() self.scale = dim_head ** -0.5 self.dim_head = dim_head self.heads = heads inner_dim = dim_head * heads self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim) self.norm2 = nn.LayerNorm(dim) self.to_q = nn.Linear(dim, inner_dim, bias=False) self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False) self.to_out = nn.Linear(inner_dim, dim, bias=False) def forward(self, x, latents): """ Args: x (torch.Tensor): image features shape (b, n1, D) latent (torch.Tensor): latent features shape (b, n2, D) """ x = self.norm1(x) latents = self.norm2(latents) b, seq_len, _ = latents.shape q = self.to_q(latents) kv_input = torch.cat((x, latents), dim=-2) k, v = self.to_kv(kv_input).chunk(2, dim=-1) q = reshape_tensor(q, self.heads) k = reshape_tensor(k, self.heads) v = reshape_tensor(v, self.heads) # attention scale = 1 / math.sqrt(math.sqrt(self.dim_head)) weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) out = weight @ v out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1) return self.to_out(out) class LocalFacialExtractor(nn.Module): def __init__( self, dim=1024, depth=10, dim_head=64, heads=16, num_id_token=5, num_queries=32, output_dim=2048, ff_mult=4, ): """ Initializes the LocalFacialExtractor class. Parameters: - dim (int): The dimensionality of latent features. - depth (int): Total number of PerceiverAttention and FeedForward layers. - dim_head (int): Dimensionality of each attention head. - heads (int): Number of attention heads. - num_id_token (int): Number of tokens used for identity features. - num_queries (int): Number of query tokens for the latent representation. - output_dim (int): Output dimension after projection. - ff_mult (int): Multiplier for the feed-forward network hidden dimension. """ super().__init__() # Storing identity token and query information self.num_id_token = num_id_token self.dim = dim self.num_queries = num_queries assert depth % 5 == 0 self.depth = depth // 5 scale = dim ** -0.5 # Learnable latent query embeddings self.latents = nn.Parameter(torch.randn(1, num_queries, dim) * scale) # Projection layer to map the latent output to the desired dimension self.proj_out = nn.Parameter(scale * torch.randn(dim, output_dim)) # Attention and FeedForward layer stack self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append( nn.ModuleList( [ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), # Perceiver Attention layer FeedForward(dim=dim, mult=ff_mult), # FeedForward layer ] ) ) # Mappings for each of the 5 different ViT features for i in range(5): setattr( self, f'mapping_{i}', nn.Sequential( nn.Linear(1024, 1024), nn.LayerNorm(1024), nn.LeakyReLU(), nn.Linear(1024, 1024), nn.LayerNorm(1024), nn.LeakyReLU(), nn.Linear(1024, dim), ), ) # Mapping for identity embedding vectors self.id_embedding_mapping = nn.Sequential( nn.Linear(1280, 1024), nn.LayerNorm(1024), nn.LeakyReLU(), nn.Linear(1024, 1024), nn.LayerNorm(1024), nn.LeakyReLU(), nn.Linear(1024, dim * num_id_token), ) def forward(self, x, y): """ Forward pass for LocalFacialExtractor. Parameters: - x (Tensor): The input identity embedding tensor of shape (batch_size, 1280). - y (list of Tensor): A list of 5 visual feature tensors each of shape (batch_size, 1024). Returns: - Tensor: The extracted latent features of shape (batch_size, num_queries, output_dim). """ # Repeat latent queries for the batch size latents = self.latents.repeat(x.size(0), 1, 1) # Map the identity embedding to tokens x = self.id_embedding_mapping(x) x = x.reshape(-1, self.num_id_token, self.dim) # Concatenate identity tokens with the latent queries latents = torch.cat((latents, x), dim=1) # Process each of the 5 visual feature inputs for i in range(5): vit_feature = getattr(self, f'mapping_{i}')(y[i]) ctx_feature = torch.cat((x, vit_feature), dim=1) # Pass through the PerceiverAttention and FeedForward layers for attn, ff in self.layers[i * self.depth: (i + 1) * self.depth]: latents = attn(ctx_feature, latents) + latents latents = ff(latents) + latents # Retain only the query latents latents = latents[:, :self.num_queries] # Project the latents to the output dimension latents = latents @ self.proj_out return latents class PerceiverCrossAttention(nn.Module): """ Args: dim (int): Dimension of the input latent and output. Default is 3072. dim_head (int): Dimension of each attention head. Default is 128. heads (int): Number of attention heads. Default is 16. kv_dim (int): Dimension of the key/value input, allowing flexible cross-attention. Default is 2048. Attributes: scale (float): Scaling factor used in dot-product attention for numerical stability. norm1 (nn.LayerNorm): Layer normalization applied to the input image features. norm2 (nn.LayerNorm): Layer normalization applied to the latent features. to_q (nn.Linear): Linear layer for projecting the latent features into queries. to_kv (nn.Linear): Linear layer for projecting the input features into keys and values. to_out (nn.Linear): Linear layer for outputting the final result after attention. """ def __init__(self, *, dim=3072, dim_head=128, heads=16, kv_dim=2048): super().__init__() self.scale = dim_head ** -0.5 self.dim_head = dim_head self.heads = heads inner_dim = dim_head * heads # Layer normalization to stabilize training self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim) self.norm2 = nn.LayerNorm(dim) # Linear transformations to produce queries, keys, and values self.to_q = nn.Linear(dim, inner_dim, bias=False) self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False) self.to_out = nn.Linear(inner_dim, dim, bias=False) def forward(self, x, latents): """ Args: x (torch.Tensor): Input image features with shape (batch_size, n1, D), where: - batch_size (b): Number of samples in the batch. - n1: Sequence length (e.g., number of patches or tokens). - D: Feature dimension. latents (torch.Tensor): Latent feature representations with shape (batch_size, n2, D), where: - n2: Number of latent elements. Returns: torch.Tensor: Attention-modulated features with shape (batch_size, n2, D). """ # Apply layer normalization to the input image and latent features x = self.norm1(x) latents = self.norm2(latents) b, seq_len, _ = latents.shape # Compute queries, keys, and values q = self.to_q(latents) k, v = self.to_kv(x).chunk(2, dim=-1) # Reshape tensors to split into attention heads q = reshape_tensor(q, self.heads) k = reshape_tensor(k, self.heads) v = reshape_tensor(v, self.heads) # Compute attention weights scale = 1 / math.sqrt(math.sqrt(self.dim_head)) weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable scaling than post-division weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) # Compute the output via weighted combination of values out = weight @ v # Reshape and permute to prepare for final linear transformation out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1) return self.to_out(out)