File size: 9,557 Bytes
a600684 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
# Provides terminal-based chat interface for RWKV model.
# Usage: python chat_with_bot.py C:\rwkv.cpp-169M.bin
# Prompts and code adapted from https://github.com/BlinkDL/ChatRWKV/blob/9ca4cdba90efaee25cfec21a0bae72cbd48d8acd/chat.py
import os
import argparse
import pathlib
import copy
import json
import time
import sampling
from rwkv_cpp import rwkv_cpp_shared_library, rwkv_cpp_model
from tokenizer_util import add_tokenizer_argument, get_tokenizer
from typing import List, Dict, Optional
# ======================================== Script settings ========================================
# English, Chinese, Japanese
LANGUAGE: str = 'English'
# QA: Question and Answer prompt to talk to an AI assistant.
# Chat: chat prompt (need a large model for adequate quality, 7B+).
PROMPT_TYPE: str = 'QA'
MAX_GENERATION_LENGTH: int = 250
# Sampling temperature. It could be a good idea to increase temperature when top_p is low.
TEMPERATURE: float = 0.8
# For better Q&A accuracy and less diversity, reduce top_p (to 0.5, 0.2, 0.1 etc.)
TOP_P: float = 0.5
# Penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
PRESENCE_PENALTY: float = 0.2
# Penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
FREQUENCY_PENALTY: float = 0.2
END_OF_LINE_TOKEN: int = 187
DOUBLE_END_OF_LINE_TOKEN: int = 535
END_OF_TEXT_TOKEN: int = 0
# =================================================================================================
parser = argparse.ArgumentParser(description='Provide terminal-based chat interface for RWKV model')
parser.add_argument('model_path', help='Path to RWKV model in ggml format')
add_tokenizer_argument(parser)
args = parser.parse_args()
script_dir: pathlib.Path = pathlib.Path(os.path.abspath(__file__)).parent
with open(script_dir / 'prompt' / f'{LANGUAGE}-{PROMPT_TYPE}.json', 'r', encoding='utf8') as json_file:
prompt_data = json.load(json_file)
user, bot, separator, init_prompt = prompt_data['user'], prompt_data['bot'], prompt_data['separator'], prompt_data['prompt']
if init_prompt == '':
raise ValueError('Prompt must not be empty')
library = rwkv_cpp_shared_library.load_rwkv_shared_library()
print(f'System info: {library.rwkv_get_system_info_string()}')
print('Loading RWKV model')
model = rwkv_cpp_model.RWKVModel(library, args.model_path)
tokenizer_decode, tokenizer_encode = get_tokenizer(args.tokenizer, model.n_vocab)
# =================================================================================================
processed_tokens: List[int] = []
logits: Optional[rwkv_cpp_model.NumpyArrayOrPyTorchTensor] = None
state: Optional[rwkv_cpp_model.NumpyArrayOrPyTorchTensor] = None
def process_tokens(_tokens: List[int], new_line_logit_bias: float = 0.0) -> None:
global processed_tokens, logits, state
logits, state = model.eval_sequence_in_chunks(_tokens, state, state, logits, use_numpy=True)
processed_tokens += _tokens
logits[END_OF_LINE_TOKEN] += new_line_logit_bias
state_by_thread: Dict[str, Dict] = {}
def save_thread_state(_thread: str) -> None:
state_by_thread[_thread] = {
'tokens': copy.deepcopy(processed_tokens),
'logits': copy.deepcopy(logits),
'state': copy.deepcopy(state)
}
def load_thread_state(_thread: str) -> None:
global processed_tokens, logits, state
thread_state = state_by_thread[_thread]
processed_tokens = copy.deepcopy(thread_state['tokens'])
logits = copy.deepcopy(thread_state['logits'])
state = copy.deepcopy(thread_state['state'])
# Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end.
# See https://github.com/BlinkDL/ChatRWKV/pull/110/files
def split_last_end_of_line(tokens: List[int]) -> List[int]:
if len(tokens) > 0 and tokens[-1] == DOUBLE_END_OF_LINE_TOKEN:
tokens = tokens[:-1] + [END_OF_LINE_TOKEN, END_OF_LINE_TOKEN]
return tokens
# =================================================================================================
processing_start: float = time.time()
prompt_tokens = tokenizer_encode(init_prompt)
prompt_token_count = len(prompt_tokens)
print(f'Processing {prompt_token_count} prompt tokens, may take a while')
process_tokens(split_last_end_of_line(prompt_tokens))
processing_duration: float = time.time() - processing_start
print(f'Processed in {int(processing_duration)} s, {int(processing_duration / prompt_token_count * 1000)} ms per token')
save_thread_state('chat_init')
save_thread_state('chat')
print(f'\nChat initialized! Your name is {user}. Write something and press Enter. Use \\n to add line breaks to your message.')
while True:
# Read user input
user_input: str = input(f'> {user}{separator} ')
msg: str = user_input.replace('\\n', '\n').strip()
temperature: float = TEMPERATURE
top_p: float = TOP_P
if '-temp=' in msg:
temperature = float(msg.split('-temp=')[1].split(' ')[0])
msg = msg.replace('-temp='+f'{temperature:g}', '')
if temperature <= 0.2:
temperature = 0.2
if temperature >= 5:
temperature = 5
if '-top_p=' in msg:
top_p = float(msg.split('-top_p=')[1].split(' ')[0])
msg = msg.replace('-top_p='+f'{top_p:g}', '')
if top_p <= 0:
top_p = 0
msg = msg.strip()
# + reset --> reset chat
if msg == '+reset':
load_thread_state('chat_init')
save_thread_state('chat')
print(f'{bot}{separator} Chat reset.\n')
continue
elif msg[:5].lower() == '+gen ' or msg[:3].lower() == '+i ' or msg[:4].lower() == '+qa ' or msg[:4].lower() == '+qq ' or msg.lower() == '+++' or msg.lower() == '++':
# +gen YOUR PROMPT --> free single-round generation with any prompt. Requires Novel model.
if msg[:5].lower() == '+gen ':
new = '\n' + msg[5:].strip()
state = None
processed_tokens = []
process_tokens(tokenizer_encode(new))
save_thread_state('gen_0')
# +i YOUR INSTRUCT --> free single-round generation with any instruct. Requires Raven model.
elif msg[:3].lower() == '+i ':
new = f'''
Below is an instruction that describes a task. Write a response that appropriately completes the request.
# Instruction:
{msg[3:].strip()}
# Response:
'''
state = None
processed_tokens = []
process_tokens(tokenizer_encode(new))
save_thread_state('gen_0')
# +qq YOUR QUESTION --> answer an independent question with more creativity (regardless of context).
elif msg[:4].lower() == '+qq ':
new = '\nQ: ' + msg[4:].strip() + '\nA:'
state = None
processed_tokens = []
process_tokens(tokenizer_encode(new))
save_thread_state('gen_0')
# +qa YOUR QUESTION --> answer an independent question (regardless of context).
elif msg[:4].lower() == '+qa ':
load_thread_state('chat_init')
real_msg = msg[4:].strip()
new = f'{user}{separator} {real_msg}\n\n{bot}{separator}'
process_tokens(tokenizer_encode(new))
save_thread_state('gen_0')
# +++ --> continue last free generation (only for +gen / +i)
elif msg.lower() == '+++':
try:
load_thread_state('gen_1')
save_thread_state('gen_0')
except Exception as e:
print(e)
continue
# ++ --> retry last free generation (only for +gen / +i)
elif msg.lower() == '++':
try:
load_thread_state('gen_0')
except Exception as e:
print(e)
continue
thread = 'gen_1'
else:
# + --> alternate chat reply
if msg.lower() == '+':
try:
load_thread_state('chat_pre')
except Exception as e:
print(e)
continue
# chat with bot
else:
load_thread_state('chat')
new = f'{user}{separator} {msg}\n\n{bot}{separator}'
process_tokens(tokenizer_encode(new), new_line_logit_bias=-999999999)
save_thread_state('chat_pre')
thread = 'chat'
# Print bot response
print(f'> {bot}{separator}', end='')
start_index: int = len(processed_tokens)
accumulated_tokens: List[int] = []
token_counts: Dict[int, int] = {}
for i in range(MAX_GENERATION_LENGTH):
for n in token_counts:
logits[n] -= PRESENCE_PENALTY + token_counts[n] * FREQUENCY_PENALTY
token: int = sampling.sample_logits(logits, temperature, top_p)
if token == END_OF_TEXT_TOKEN:
print()
break
if token not in token_counts:
token_counts[token] = 1
else:
token_counts[token] += 1
process_tokens([token])
# Avoid UTF-8 display issues
accumulated_tokens += [token]
decoded: str = tokenizer_decode(accumulated_tokens)
if '\uFFFD' not in decoded:
print(decoded, end='', flush=True)
accumulated_tokens = []
if thread == 'chat':
if '\n\n' in tokenizer_decode(processed_tokens[start_index:]):
break
if i == MAX_GENERATION_LENGTH - 1:
print()
save_thread_state(thread)
|