Joash2024's picture
feat: add problem types and monitoring
5162902
raw
history blame
5.56 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import spaces
from monitoring import PerformanceMonitor, measure_time
# Model configurations
BASE_MODEL = "HuggingFaceTB/SmolLM2-1.7B-Instruct" # Base model
ADAPTER_MODEL = "Joash2024/Math-SmolLM2-1.7B" # Our LoRA adapter
# Initialize performance monitor
monitor = PerformanceMonitor()
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
tokenizer.pad_token = tokenizer.eos_token
print("Loading base model...")
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
device_map="auto",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
use_safetensors=True
)
print("Loading LoRA adapter...")
model = PeftModel.from_pretrained(
model,
ADAPTER_MODEL,
torch_dtype=torch.float16,
device_map="auto"
)
model.eval()
def format_prompt(problem: str, problem_type: str) -> str:
"""Format input prompt for the model"""
if problem_type == "Derivative":
return f"""Given a mathematical function, find its derivative.
Function: {problem}
The derivative of this function is:"""
elif problem_type == "Addition":
return f"""Solve this addition problem.
Problem: {problem}
The solution is:"""
else: # Roots or Custom
return f"""Find the roots of this equation.
Equation: {problem}
The roots are:"""
@spaces.GPU
@measure_time
def get_model_response(problem: str, problem_type: str) -> str:
"""Generate response from model"""
# Format prompt
prompt = format_prompt(problem, problem_type)
# Tokenize
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=100,
num_return_sequences=1,
temperature=0.1,
do_sample=False, # Deterministic generation
pad_token_id=tokenizer.eos_token_id
)
# Decode and extract response
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = generated[len(prompt):].strip()
return response
@spaces.GPU
def solve_problem(problem: str, problem_type: str) -> tuple:
"""Solve math problem and track performance"""
if not problem:
return "Please enter a problem", None
# Record problem type
monitor.record_problem_type(problem_type)
# Get model response with timing
response, time_taken = get_model_response(problem, problem_type)
# Format output with steps
if problem_type == "Derivative":
output = f"""Generated derivative: {response}
Let's verify this step by step:
1. Starting with f(x) = {problem}
2. Applying differentiation rules
3. We get f'(x) = {response}"""
elif problem_type == "Addition":
output = f"""Solution: {response}
Let's verify this step by step:
1. Starting with: {problem}
2. Adding the numbers
3. We get: {response}"""
else: # Roots
output = f"""Found roots: {response}
Let's verify this step by step:
1. Starting with equation: {problem}
2. Solving for x
3. Roots are: {response}"""
# Record metrics
monitor.record_response_time("model", time_taken)
monitor.record_success("model", not response.startswith("Error"))
# Get updated statistics
stats = monitor.get_statistics()
# Format statistics for display
stats_display = f"""
### Performance Metrics
#### Response Times
- Average: {stats.get('model_avg_response_time', 0):.2f} seconds
#### Success Rate
- {stats.get('model_success_rate', 0):.1f}%
#### Problem Types Used
"""
for ptype, percentage in stats.get('problem_type_distribution', {}).items():
stats_display += f"- {ptype}: {percentage:.1f}%\n"
return output, stats_display
# Create Gradio interface
with gr.Blocks(title="Mathematics Problem Solver") as demo:
gr.Markdown("# Mathematics Problem Solver")
gr.Markdown("Using our fine-tuned model to solve mathematical problems")
with gr.Row():
with gr.Column():
problem_type = gr.Dropdown(
choices=["Derivative", "Addition", "Roots"],
value="Derivative",
label="Problem Type"
)
problem_input = gr.Textbox(
label="Enter your problem",
placeholder="Example: x^2 + 3x"
)
solve_btn = gr.Button("Solve", variant="primary")
with gr.Row():
solution_output = gr.Textbox(
label="Solution with Steps",
lines=6
)
# Performance metrics display
with gr.Row():
metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*")
# Example problems
gr.Examples(
examples=[
["x^2 + 3x", "Derivative"],
["235 + 567", "Addition"],
["x^2 - 4", "Roots"],
["\\sin{\\left(x\\right)}", "Derivative"],
["e^x", "Derivative"],
["\\frac{1}{x}", "Derivative"]
],
inputs=[problem_input, problem_type],
outputs=[solution_output, metrics_display],
fn=solve_problem,
cache_examples=False # Disable caching
)
# Connect the interface
solve_btn.click(
fn=solve_problem,
inputs=[problem_input, problem_type],
outputs=[solution_output, metrics_display]
)
if __name__ == "__main__":
demo.launch()