Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel | |
import spaces | |
from monitoring import PerformanceMonitor, measure_time | |
# Model configurations | |
BASE_MODEL = "HuggingFaceTB/SmolLM2-1.7B-Instruct" # Base model | |
ADAPTER_MODEL = "Joash2024/Math-SmolLM2-1.7B" # Our LoRA adapter | |
# Initialize performance monitor | |
monitor = PerformanceMonitor() | |
print("Loading tokenizer...") | |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL) | |
tokenizer.pad_token = tokenizer.eos_token | |
print("Loading base model...") | |
base_model = AutoModelForCausalLM.from_pretrained( | |
BASE_MODEL, | |
device_map="auto", | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
use_safetensors=True | |
) | |
print("Loading fine-tuned model...") | |
finetuned_model = PeftModel.from_pretrained( | |
base_model, | |
ADAPTER_MODEL, | |
torch_dtype=torch.float16, | |
device_map="auto" | |
) | |
# Set models to eval mode | |
base_model.eval() | |
finetuned_model.eval() | |
def format_prompt(problem: str, problem_type: str) -> str: | |
"""Format input prompt for the model""" | |
if problem_type == "Derivative": | |
return f"""Given a mathematical function, find its derivative. | |
Function: {problem} | |
The derivative of this function is:""" | |
elif problem_type == "Addition": | |
return f"""Solve this addition problem. | |
Problem: {problem} | |
The solution is:""" | |
else: # Roots | |
return f"""Find the roots of this equation. | |
Equation: {problem} | |
The roots are:""" | |
def get_model_response(problem: str, problem_type: str, model) -> str: | |
"""Generate response from model""" | |
# Format prompt | |
prompt = format_prompt(problem, problem_type) | |
# Tokenize | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
# Generate | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_length=100, | |
num_return_sequences=1, | |
temperature=0.1, | |
do_sample=False, # Deterministic generation | |
pad_token_id=tokenizer.eos_token_id | |
) | |
# Decode and extract response | |
generated = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
response = generated[len(prompt):].strip() | |
return response | |
def solve_problem(problem: str, problem_type: str) -> tuple: | |
"""Solve math problem with both models""" | |
if not problem: | |
return "Please enter a problem", "Please enter a problem", None | |
# Record problem type | |
monitor.record_problem_type(problem_type) | |
# Get responses from both models with timing | |
base_response, base_time = get_model_response(problem, problem_type, base_model) | |
finetuned_response, finetuned_time = get_model_response(problem, problem_type, finetuned_model) | |
# Format outputs with steps | |
if problem_type == "Derivative": | |
base_output = f"""Generated derivative: {base_response} | |
Let's verify this step by step: | |
1. Starting with f(x) = {problem} | |
2. Applying differentiation rules | |
3. We get f'(x) = {base_response}""" | |
finetuned_output = f"""Generated derivative: {finetuned_response} | |
Let's verify this step by step: | |
1. Starting with f(x) = {problem} | |
2. Applying differentiation rules | |
3. We get f'(x) = {finetuned_response}""" | |
elif problem_type == "Addition": | |
base_output = f"""Solution: {base_response} | |
Let's verify this step by step: | |
1. Starting with: {problem} | |
2. Adding the numbers | |
3. We get: {base_response}""" | |
finetuned_output = f"""Solution: {finetuned_response} | |
Let's verify this step by step: | |
1. Starting with: {problem} | |
2. Adding the numbers | |
3. We get: {finetuned_response}""" | |
else: # Roots | |
base_output = f"""Found roots: {base_response} | |
Let's verify this step by step: | |
1. Starting with equation: {problem} | |
2. Solving for x | |
3. Roots are: {base_response}""" | |
finetuned_output = f"""Found roots: {finetuned_response} | |
Let's verify this step by step: | |
1. Starting with equation: {problem} | |
2. Solving for x | |
3. Roots are: {finetuned_response}""" | |
# Record metrics | |
monitor.record_response_time("base", base_time) | |
monitor.record_response_time("finetuned", finetuned_time) | |
monitor.record_success("base", not base_response.startswith("Error")) | |
monitor.record_success("finetuned", not finetuned_response.startswith("Error")) | |
# Get updated statistics | |
stats = monitor.get_statistics() | |
# Format statistics for display | |
stats_display = f""" | |
### Performance Metrics | |
#### Response Times (seconds) | |
- Base Model: {stats.get('base_avg_response_time', 0):.2f} avg | |
- Fine-tuned Model: {stats.get('finetuned_avg_response_time', 0):.2f} avg | |
#### Success Rates | |
- Base Model: {stats.get('base_success_rate', 0):.1f}% | |
- Fine-tuned Model: {stats.get('finetuned_success_rate', 0):.1f}% | |
#### Problem Types Used | |
""" | |
for ptype, percentage in stats.get('problem_type_distribution', {}).items(): | |
stats_display += f"- {ptype}: {percentage:.1f}%\n" | |
return base_output, finetuned_output, stats_display | |
# Create Gradio interface | |
with gr.Blocks(title="Mathematics Problem Solver") as demo: | |
gr.Markdown("# Mathematics Problem Solver") | |
gr.Markdown("Compare solutions between base and fine-tuned models") | |
with gr.Row(): | |
with gr.Column(): | |
problem_type = gr.Dropdown( | |
choices=["Derivative", "Addition", "Roots"], | |
value="Derivative", | |
label="Problem Type" | |
) | |
problem_input = gr.Textbox( | |
label="Enter your problem", | |
placeholder="Example: x^2 + 3x" | |
) | |
solve_btn = gr.Button("Solve", variant="primary") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("### Base Model") | |
base_output = gr.Textbox(label="Base Model Solution", lines=6) | |
with gr.Column(): | |
gr.Markdown("### Fine-tuned Model") | |
finetuned_output = gr.Textbox(label="Fine-tuned Model Solution", lines=6) | |
# Performance metrics display | |
with gr.Row(): | |
metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*") | |
# Example problems | |
gr.Examples( | |
examples=[ | |
["x^2 + 3x", "Derivative"], | |
["235 + 567", "Addition"], | |
["x^2 - 4", "Roots"], | |
["\\sin{\\left(x\\right)}", "Derivative"], | |
["e^x", "Derivative"], | |
["\\frac{1}{x}", "Derivative"] | |
], | |
inputs=[problem_input, problem_type], | |
outputs=[base_output, finetuned_output, metrics_display], | |
fn=solve_problem, | |
cache_examples=False # Disable caching | |
) | |
# Connect the interface | |
solve_btn.click( | |
fn=solve_problem, | |
inputs=[problem_input, problem_type], | |
outputs=[base_output, finetuned_output, metrics_display] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |