Joash2024's picture
feat: add model comparison with base and fine-tuned
1a468e6
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import spaces
from monitoring import PerformanceMonitor, measure_time
# Model configurations
BASE_MODEL = "HuggingFaceTB/SmolLM2-1.7B-Instruct" # Base model
ADAPTER_MODEL = "Joash2024/Math-SmolLM2-1.7B" # Our LoRA adapter
# Initialize performance monitor
monitor = PerformanceMonitor()
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
tokenizer.pad_token = tokenizer.eos_token
print("Loading base model...")
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
device_map="auto",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
use_safetensors=True
)
print("Loading fine-tuned model...")
finetuned_model = PeftModel.from_pretrained(
base_model,
ADAPTER_MODEL,
torch_dtype=torch.float16,
device_map="auto"
)
# Set models to eval mode
base_model.eval()
finetuned_model.eval()
def format_prompt(problem: str, problem_type: str) -> str:
"""Format input prompt for the model"""
if problem_type == "Derivative":
return f"""Given a mathematical function, find its derivative.
Function: {problem}
The derivative of this function is:"""
elif problem_type == "Addition":
return f"""Solve this addition problem.
Problem: {problem}
The solution is:"""
else: # Roots
return f"""Find the roots of this equation.
Equation: {problem}
The roots are:"""
@spaces.GPU
@measure_time
def get_model_response(problem: str, problem_type: str, model) -> str:
"""Generate response from model"""
# Format prompt
prompt = format_prompt(problem, problem_type)
# Tokenize
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=100,
num_return_sequences=1,
temperature=0.1,
do_sample=False, # Deterministic generation
pad_token_id=tokenizer.eos_token_id
)
# Decode and extract response
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = generated[len(prompt):].strip()
return response
@spaces.GPU
def solve_problem(problem: str, problem_type: str) -> tuple:
"""Solve math problem with both models"""
if not problem:
return "Please enter a problem", "Please enter a problem", None
# Record problem type
monitor.record_problem_type(problem_type)
# Get responses from both models with timing
base_response, base_time = get_model_response(problem, problem_type, base_model)
finetuned_response, finetuned_time = get_model_response(problem, problem_type, finetuned_model)
# Format outputs with steps
if problem_type == "Derivative":
base_output = f"""Generated derivative: {base_response}
Let's verify this step by step:
1. Starting with f(x) = {problem}
2. Applying differentiation rules
3. We get f'(x) = {base_response}"""
finetuned_output = f"""Generated derivative: {finetuned_response}
Let's verify this step by step:
1. Starting with f(x) = {problem}
2. Applying differentiation rules
3. We get f'(x) = {finetuned_response}"""
elif problem_type == "Addition":
base_output = f"""Solution: {base_response}
Let's verify this step by step:
1. Starting with: {problem}
2. Adding the numbers
3. We get: {base_response}"""
finetuned_output = f"""Solution: {finetuned_response}
Let's verify this step by step:
1. Starting with: {problem}
2. Adding the numbers
3. We get: {finetuned_response}"""
else: # Roots
base_output = f"""Found roots: {base_response}
Let's verify this step by step:
1. Starting with equation: {problem}
2. Solving for x
3. Roots are: {base_response}"""
finetuned_output = f"""Found roots: {finetuned_response}
Let's verify this step by step:
1. Starting with equation: {problem}
2. Solving for x
3. Roots are: {finetuned_response}"""
# Record metrics
monitor.record_response_time("base", base_time)
monitor.record_response_time("finetuned", finetuned_time)
monitor.record_success("base", not base_response.startswith("Error"))
monitor.record_success("finetuned", not finetuned_response.startswith("Error"))
# Get updated statistics
stats = monitor.get_statistics()
# Format statistics for display
stats_display = f"""
### Performance Metrics
#### Response Times (seconds)
- Base Model: {stats.get('base_avg_response_time', 0):.2f} avg
- Fine-tuned Model: {stats.get('finetuned_avg_response_time', 0):.2f} avg
#### Success Rates
- Base Model: {stats.get('base_success_rate', 0):.1f}%
- Fine-tuned Model: {stats.get('finetuned_success_rate', 0):.1f}%
#### Problem Types Used
"""
for ptype, percentage in stats.get('problem_type_distribution', {}).items():
stats_display += f"- {ptype}: {percentage:.1f}%\n"
return base_output, finetuned_output, stats_display
# Create Gradio interface
with gr.Blocks(title="Mathematics Problem Solver") as demo:
gr.Markdown("# Mathematics Problem Solver")
gr.Markdown("Compare solutions between base and fine-tuned models")
with gr.Row():
with gr.Column():
problem_type = gr.Dropdown(
choices=["Derivative", "Addition", "Roots"],
value="Derivative",
label="Problem Type"
)
problem_input = gr.Textbox(
label="Enter your problem",
placeholder="Example: x^2 + 3x"
)
solve_btn = gr.Button("Solve", variant="primary")
with gr.Row():
with gr.Column():
gr.Markdown("### Base Model")
base_output = gr.Textbox(label="Base Model Solution", lines=6)
with gr.Column():
gr.Markdown("### Fine-tuned Model")
finetuned_output = gr.Textbox(label="Fine-tuned Model Solution", lines=6)
# Performance metrics display
with gr.Row():
metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*")
# Example problems
gr.Examples(
examples=[
["x^2 + 3x", "Derivative"],
["235 + 567", "Addition"],
["x^2 - 4", "Roots"],
["\\sin{\\left(x\\right)}", "Derivative"],
["e^x", "Derivative"],
["\\frac{1}{x}", "Derivative"]
],
inputs=[problem_input, problem_type],
outputs=[base_output, finetuned_output, metrics_display],
fn=solve_problem,
cache_examples=False # Disable caching
)
# Connect the interface
solve_btn.click(
fn=solve_problem,
inputs=[problem_input, problem_type],
outputs=[base_output, finetuned_output, metrics_display]
)
if __name__ == "__main__":
demo.launch()