Spaces:
Sleeping
Sleeping
feat: configure for ZeroGPU with A100
Browse files- README.md +5 -4
- app.py +4 -1
- requirements.txt +1 -0
README.md
CHANGED
@@ -4,18 +4,19 @@ emoji: 🧮
|
|
4 |
colorFrom: blue
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
hardware:
|
11 |
-
|
12 |
-
|
13 |
python_packages:
|
14 |
- "torch>=2.0.0"
|
15 |
- "transformers>=4.30.0"
|
16 |
- "accelerate>=0.20.0"
|
17 |
- "peft==0.5.0"
|
18 |
- "numpy>=1.21.0"
|
|
|
19 |
---
|
20 |
|
21 |
# Mathematics Derivative Solver V2
|
@@ -29,7 +30,7 @@ This Space demonstrates our fine-tuned math model for solving derivatives. We us
|
|
29 |
|
30 |
- Step-by-step derivative solutions
|
31 |
- LaTeX notation support
|
32 |
-
- A100 GPU acceleration
|
33 |
- Float16 precision for efficient inference
|
34 |
|
35 |
## Supported Functions
|
|
|
4 |
colorFrom: blue
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.44.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
hardware:
|
11 |
+
zerogpu: true
|
12 |
+
memory: 16
|
13 |
python_packages:
|
14 |
- "torch>=2.0.0"
|
15 |
- "transformers>=4.30.0"
|
16 |
- "accelerate>=0.20.0"
|
17 |
- "peft==0.5.0"
|
18 |
- "numpy>=1.21.0"
|
19 |
+
- "spaces>=0.1.0"
|
20 |
---
|
21 |
|
22 |
# Mathematics Derivative Solver V2
|
|
|
30 |
|
31 |
- Step-by-step derivative solutions
|
32 |
- LaTeX notation support
|
33 |
+
- A100 GPU acceleration via ZeroGPU
|
34 |
- Float16 precision for efficient inference
|
35 |
|
36 |
## Supported Functions
|
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from peft import PeftModel
|
|
|
5 |
|
6 |
# Model configurations
|
7 |
BASE_MODEL = "HuggingFaceTB/SmolLM2-1.7B-Instruct" # Base model
|
@@ -36,9 +37,10 @@ def format_prompt(function: str) -> str:
|
|
36 |
Function: {function}
|
37 |
The derivative of this function is:"""
|
38 |
|
|
|
39 |
def generate_derivative(function: str, max_length: int = 100) -> str:
|
40 |
"""Generate derivative for a given function"""
|
41 |
-
# Format
|
42 |
prompt = format_prompt(function)
|
43 |
|
44 |
# Tokenize
|
@@ -61,6 +63,7 @@ def generate_derivative(function: str, max_length: int = 100) -> str:
|
|
61 |
|
62 |
return derivative
|
63 |
|
|
|
64 |
def solve_derivative(function: str) -> str:
|
65 |
"""Solve derivative and format output"""
|
66 |
if not function:
|
|
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from peft import PeftModel
|
5 |
+
import spaces
|
6 |
|
7 |
# Model configurations
|
8 |
BASE_MODEL = "HuggingFaceTB/SmolLM2-1.7B-Instruct" # Base model
|
|
|
37 |
Function: {function}
|
38 |
The derivative of this function is:"""
|
39 |
|
40 |
+
@spaces.GPU
|
41 |
def generate_derivative(function: str, max_length: int = 100) -> str:
|
42 |
"""Generate derivative for a given function"""
|
43 |
+
# Format prompt
|
44 |
prompt = format_prompt(function)
|
45 |
|
46 |
# Tokenize
|
|
|
63 |
|
64 |
return derivative
|
65 |
|
66 |
+
@spaces.GPU
|
67 |
def solve_derivative(function: str) -> str:
|
68 |
"""Solve derivative and format output"""
|
69 |
if not function:
|
requirements.txt
CHANGED
@@ -4,3 +4,4 @@ accelerate>=0.20.0
|
|
4 |
peft==0.5.0
|
5 |
gradio==4.44.1
|
6 |
numpy>=1.21.0
|
|
|
|
4 |
peft==0.5.0
|
5 |
gradio==4.44.1
|
6 |
numpy>=1.21.0
|
7 |
+
spaces>=0.1.0
|