Spaces:
Sleeping
Sleeping
Commit
·
8df9fb2
0
Parent(s):
feat: initial commit with working test code
Browse files- README.md +41 -0
- app.py +120 -0
- requirements.txt +6 -0
README.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Mathematics Derivative Solver V2
|
3 |
+
emoji: 🧮
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.8.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
hardware:
|
11 |
+
accelerator: a100
|
12 |
+
gpu: true
|
13 |
+
python_packages:
|
14 |
+
- "torch>=2.0.0"
|
15 |
+
- "transformers>=4.30.0"
|
16 |
+
- "accelerate>=0.20.0"
|
17 |
+
- "peft==0.5.0"
|
18 |
+
- "numpy>=1.21.0"
|
19 |
+
---
|
20 |
+
|
21 |
+
# Mathematics Derivative Solver V2
|
22 |
+
|
23 |
+
This Space demonstrates our fine-tuned math model for solving derivatives. We use:
|
24 |
+
|
25 |
+
1. Base Model: HuggingFaceTB/SmolLM2-1.7B-Instruct
|
26 |
+
2. Our Fine-tuned Model: Joash2024/Math-SmolLM2-1.7B
|
27 |
+
|
28 |
+
## Features
|
29 |
+
|
30 |
+
- Step-by-step derivative solutions
|
31 |
+
- LaTeX notation support
|
32 |
+
- A100 GPU acceleration
|
33 |
+
- Float16 precision for efficient inference
|
34 |
+
|
35 |
+
## Supported Functions
|
36 |
+
|
37 |
+
- Polynomials (x^2, x^3 + 2x)
|
38 |
+
- Trigonometric (sin(x), cos(x))
|
39 |
+
- Exponential (e^x)
|
40 |
+
- Logarithmic (log(x))
|
41 |
+
- Combinations (x e^{-x})
|
app.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from peft import PeftModel
|
5 |
+
|
6 |
+
# Model configurations
|
7 |
+
BASE_MODEL = "HuggingFaceTB/SmolLM2-1.7B-Instruct" # Base model
|
8 |
+
ADAPTER_MODEL = "Joash2024/Math-SmolLM2-1.7B" # Our LoRA adapter
|
9 |
+
|
10 |
+
print("Loading tokenizer...")
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
12 |
+
tokenizer.pad_token = tokenizer.eos_token
|
13 |
+
|
14 |
+
print("Loading base model...")
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
BASE_MODEL,
|
17 |
+
device_map="auto",
|
18 |
+
torch_dtype=torch.float16
|
19 |
+
)
|
20 |
+
|
21 |
+
print("Loading LoRA adapter...")
|
22 |
+
model = PeftModel.from_pretrained(model, ADAPTER_MODEL)
|
23 |
+
model.eval()
|
24 |
+
|
25 |
+
def format_prompt(function: str) -> str:
|
26 |
+
"""Format input prompt for the model"""
|
27 |
+
return f"""Given a mathematical function, find its derivative.
|
28 |
+
|
29 |
+
Function: {function}
|
30 |
+
The derivative of this function is:"""
|
31 |
+
|
32 |
+
def generate_derivative(function: str, max_length: int = 200) -> str:
|
33 |
+
"""Generate derivative for a given function"""
|
34 |
+
# Format the prompt
|
35 |
+
prompt = format_prompt(function)
|
36 |
+
|
37 |
+
# Tokenize
|
38 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
39 |
+
|
40 |
+
# Generate
|
41 |
+
with torch.no_grad():
|
42 |
+
outputs = model.generate(
|
43 |
+
**inputs,
|
44 |
+
max_length=max_length,
|
45 |
+
num_return_sequences=1,
|
46 |
+
temperature=0.1,
|
47 |
+
do_sample=True,
|
48 |
+
pad_token_id=tokenizer.eos_token_id
|
49 |
+
)
|
50 |
+
|
51 |
+
# Decode and extract derivative
|
52 |
+
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
53 |
+
derivative = generated[len(prompt):].strip()
|
54 |
+
|
55 |
+
return derivative
|
56 |
+
|
57 |
+
def solve_derivative(function: str) -> str:
|
58 |
+
"""Solve derivative and format output"""
|
59 |
+
if not function:
|
60 |
+
return "Please enter a function"
|
61 |
+
|
62 |
+
print(f"\nGenerating derivative for: {function}")
|
63 |
+
derivative = generate_derivative(function)
|
64 |
+
|
65 |
+
# Format output with step-by-step explanation
|
66 |
+
output = f"""Generated derivative: {derivative}
|
67 |
+
|
68 |
+
Let's verify this step by step:
|
69 |
+
1. Starting with f(x) = {function}
|
70 |
+
2. Applying differentiation rules
|
71 |
+
3. We get f'(x) = {derivative}"""
|
72 |
+
|
73 |
+
return output
|
74 |
+
|
75 |
+
# Create Gradio interface
|
76 |
+
with gr.Blocks(title="Mathematics Derivative Solver") as demo:
|
77 |
+
gr.Markdown("# Mathematics Derivative Solver")
|
78 |
+
gr.Markdown("Using our fine-tuned model to solve derivatives")
|
79 |
+
|
80 |
+
with gr.Row():
|
81 |
+
with gr.Column():
|
82 |
+
function_input = gr.Textbox(
|
83 |
+
label="Enter a function",
|
84 |
+
placeholder="Example: x^2, sin(x), e^x"
|
85 |
+
)
|
86 |
+
solve_btn = gr.Button("Find Derivative", variant="primary")
|
87 |
+
|
88 |
+
with gr.Row():
|
89 |
+
output = gr.Textbox(
|
90 |
+
label="Solution with Steps",
|
91 |
+
lines=6
|
92 |
+
)
|
93 |
+
|
94 |
+
# Example functions
|
95 |
+
gr.Examples(
|
96 |
+
examples=[
|
97 |
+
["x^2"],
|
98 |
+
["\\sin{\\left(x\\right)}"],
|
99 |
+
["e^x"],
|
100 |
+
["\\frac{1}{x}"],
|
101 |
+
["x^3 + 2x"],
|
102 |
+
["\\cos{\\left(x^2\\right)}"],
|
103 |
+
["\\log{\\left(x\\right)}"],
|
104 |
+
["x e^{-x}"]
|
105 |
+
],
|
106 |
+
inputs=function_input,
|
107 |
+
outputs=output,
|
108 |
+
fn=solve_derivative,
|
109 |
+
cache_examples=True,
|
110 |
+
)
|
111 |
+
|
112 |
+
# Connect the interface
|
113 |
+
solve_btn.click(
|
114 |
+
fn=solve_derivative,
|
115 |
+
inputs=[function_input],
|
116 |
+
outputs=output
|
117 |
+
)
|
118 |
+
|
119 |
+
if __name__ == "__main__":
|
120 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.0.0
|
2 |
+
transformers>=4.30.0
|
3 |
+
accelerate>=0.20.0
|
4 |
+
peft==0.5.0
|
5 |
+
gradio>=4.8.0
|
6 |
+
numpy>=1.21.0
|