import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel import spaces # Model configurations BASE_MODEL = "HuggingFaceTB/SmolLM2-1.7B-Instruct" # Base model ADAPTER_MODEL = "Joash2024/Math-SmolLM2-1.7B" # Our LoRA adapter print("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL) tokenizer.pad_token = tokenizer.eos_token print("Loading base model...") model = AutoModelForCausalLM.from_pretrained( BASE_MODEL, device_map="auto", torch_dtype=torch.float16, low_cpu_mem_usage=True, use_safetensors=True ) print("Loading LoRA adapter...") model = PeftModel.from_pretrained( model, ADAPTER_MODEL, torch_dtype=torch.float16, device_map="auto" ) model.eval() def format_prompt(function: str) -> str: """Format input prompt for the model""" return f"""Given a mathematical function, find its derivative. Function: {function} The derivative of this function is:""" @spaces.GPU def generate_derivative(function: str, max_length: int = 100) -> str: """Generate derivative for a given function""" # Format prompt prompt = format_prompt(function) # Tokenize inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # Generate with torch.no_grad(): outputs = model.generate( **inputs, max_length=max_length, num_return_sequences=1, temperature=0.1, do_sample=False, # Deterministic generation pad_token_id=tokenizer.eos_token_id ) # Decode and extract derivative generated = tokenizer.decode(outputs[0], skip_special_tokens=True) derivative = generated[len(prompt):].strip() return derivative @spaces.GPU def solve_derivative(function: str) -> str: """Solve derivative and format output""" if not function: return "Please enter a function" print(f"\nGenerating derivative for: {function}") derivative = generate_derivative(function) # Format output with step-by-step explanation output = f"""Generated derivative: {derivative} Let's verify this step by step: 1. Starting with f(x) = {function} 2. Applying differentiation rules 3. We get f'(x) = {derivative}""" return output # Create Gradio interface with gr.Blocks(title="Mathematics Derivative Solver") as demo: gr.Markdown("# Mathematics Derivative Solver") gr.Markdown("Using our fine-tuned model to solve derivatives") with gr.Row(): with gr.Column(): function_input = gr.Textbox( label="Enter a function", placeholder="Example: x^2, sin(x), e^x" ) solve_btn = gr.Button("Find Derivative", variant="primary") with gr.Row(): output = gr.Textbox( label="Solution with Steps", lines=6 ) # Example functions (reduced) gr.Examples( examples=[ ["x^2"], ["\\sin{\\left(x\\right)}"], ["e^x"] ], inputs=function_input, outputs=output, fn=solve_derivative, cache_examples=False # Disable caching ) # Connect the interface solve_btn.click( fn=solve_derivative, inputs=[function_input], outputs=output ) if __name__ == "__main__": demo.launch()