Spaces:
Sleeping
Sleeping
from langchain.prompts import ChatPromptTemplate | |
from langchain.output_parsers import ResponseSchema | |
from langchain.output_parsers import StructuredOutputParser | |
from langchain_core.output_parsers import StrOutputParser | |
from scrap_post import scrappost | |
import requests | |
def is_shortened_url(url): # It is checking whether it is a shorten url or regular website url | |
try: | |
response = requests.head(url, allow_redirects=True) | |
final_url = response.url | |
if final_url != url: | |
return True | |
return False | |
except requests.exceptions.RequestException as e: | |
print("Error:", e) | |
return False | |
def expand_short_url(short_url): # It is converting shorten url to regular url | |
try: | |
response = requests.head(short_url, allow_redirects=True) | |
if response.status_code == 200: | |
return response.url | |
else: | |
print("Error: Short URL couldn't be expanded.") | |
return None | |
except requests.exceptions.RequestException as e: | |
print("Error:", e) | |
return None | |
def get_original_url(url): | |
if is_shortened_url(url): | |
return expand_short_url(url) | |
else: | |
return url | |
# Below function extract the post only content from complete web page content and parraphrase the extracted post | |
def paraphrased_post(url,model): | |
post=scrappost(url) | |
template=""" Create a paraphrased version of a given LinkedIn post while preserving the core message and tone. Ensure the paraphrased content is clear, engaging, and suitable for professional communication on LinkedIn. Focus on rephrasing the post to enhance readability and broaden its appeal to a diverse audience. | |
LinkedIn post: {data} | |
The output should only the paraphrased post. | |
""" | |
prompt = ChatPromptTemplate.from_template(template) | |
chain = prompt | model | StrOutputParser() | |
phrased_post=chain.invoke({"data":post}) | |
return phrased_post | |
def generate_details(post_data,model): | |
template=""" Extract the top three keywords , take aways and highlights from a LinkedIn post in descending order of relevance. Provide only the three most significant keywords that encapsulate the main topic or message of the post. | |
LinkedIn post: {data} | |
Keywords:\n\n | |
Output should only include keywords , take aways and highlights. | |
""" | |
prompt = ChatPromptTemplate.from_template(template) | |
chain = prompt | model | StrOutputParser() | |
keywords=chain.invoke({"data":post_data}) | |
return keywords | |