Spaces:
Runtime error
Runtime error
import os | |
from typing import Union | |
import imageio | |
import numpy as np | |
import torch | |
import torchvision | |
from einops import rearrange | |
from tqdm import tqdm | |
def save_videos_grid( | |
videos: torch.Tensor, save_path: str = "output", path: str = "output.gif", rescale=False, n_rows=4, fps=3 | |
): | |
videos = rearrange(videos, "b c t h w -> t b c h w") | |
outputs = [] | |
for x in videos: | |
x = torchvision.utils.make_grid(x, nrow=n_rows) | |
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
if rescale: | |
x = (x + 1.0) / 2.0 # -1,1 -> 0,1 | |
x = (x * 255).numpy().astype(np.uint8) | |
outputs.append(x) | |
if not os.path.exists(save_path): | |
os.makedirs(save_path) | |
imageio.mimsave(os.path.join(save_path, path), outputs, fps=fps) | |
return os.path.join(save_path, path) | |
# DDIM Inversion | |
def init_prompt(prompt, pipeline): | |
uncond_input = pipeline.tokenizer( | |
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length, return_tensors="pt" | |
) | |
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0] | |
text_input = pipeline.tokenizer( | |
[prompt], | |
padding="max_length", | |
max_length=pipeline.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0] | |
context = torch.cat([uncond_embeddings, text_embeddings]) | |
return context | |
def next_step( | |
model_output: Union[torch.FloatTensor, np.ndarray], | |
timestep: int, | |
sample: Union[torch.FloatTensor, np.ndarray], | |
ddim_scheduler, | |
): | |
timestep, next_timestep = ( | |
min(timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), | |
timestep, | |
) | |
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod | |
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep] | |
beta_prod_t = 1 - alpha_prod_t | |
next_original_sample = (sample - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5 | |
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output | |
next_sample = alpha_prod_t_next**0.5 * next_original_sample + next_sample_direction | |
return next_sample | |
def get_noise_pred_single(latents, t, context, unet): | |
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"] | |
return noise_pred | |
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt): | |
context = init_prompt(prompt, pipeline) | |
uncond_embeddings, cond_embeddings = context.chunk(2) | |
all_latent = [latent] | |
latent = latent.clone().detach() | |
for i in tqdm(range(num_inv_steps)): | |
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1] | |
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet) | |
latent = next_step(noise_pred, t, latent, ddim_scheduler) | |
all_latent.append(latent) | |
return all_latent | |
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""): | |
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt) | |
return ddim_latents | |