# Model Card for DINOv2-S/B/L/g These are Vision Transformer models trained following the method described in the paper: "DINOv2: Learning Robust Visual Features without Supervision" We provide 4 models: 1 ViT-g trained from scratch, and 3 ViT-S/B/L models distilled from the ViT-g. ## Model Details The model takes an image as input and returns a class token and patch tokens. The embedding dimension is: - 384 for ViT-S. - 768 for ViT-B. - 1024 for ViT-L. - 1536 for ViT-g. The models follow a Transformer architecture, with a patch size of 14. For a 224x224 image, this results in 1 class token + 256 patch tokens. The models can accept larger images provided the image shapes are multiples of the patch size (14). If this condition is not verified, the model will crop to the closest smaller multiple of the patch size. ### Model Description - **Developed by:** Meta AI - **Model type:** Vision Transformer - **License:** CC-BY-NC - **Repository:** https://github.com/facebookresearch/dinov2 - **Paper:** https://arxiv.org/abs/2304.07193 - **Demo:** https://dinov2.metademolab.com/ ## Uses The models are vision backbones providing multi-purpose features for downstream tasks. ### Direct Use The models can be used without fine-tuning, with downstream classifiers as simple as linear layers, to obtain competitive results: - on depth estimation, semantic segmentation, using linear layers. - on image classification, using k-NN classifiers on the class token. - on image classification, with logistic regression classifiers applied on the class token. - on image classification, with a linear layer applied on the class token and the average of the patch tokens. - on image retrieval using nearest neighbors. ### Downstream Use It is technically possible to perform fine-tuning on the models, for small gains (we measured +2% on ImageNet-1k classification). We recommend keeping this as a very last step and only when necessary, as the features already provide good performance out-of-the-box. ## Bias, Risks, and Limitations Despite improvements thanks to the training method not using annotations, we still observe significant biases in our models toward rich households from Western countries. ### Recommendations We expect fine-tuning will increase the biases in the features produced by the model as they will be tuned to the fine-tuning labels. ## How to Get Started with the Model Use the code below to get started with the model. ```python import torch dinov2_vits14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14') dinov2_vitb14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14') dinov2_vitl14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14') dinov2_vitg14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitg14') ``` ## Training Details ### Training Data - **Training data:** LVD-142M (see paper) - **Training regime:** fp16 using PyTorch-FSDP mixed-precision. ### Training Procedure - **Training objective:** - DINO self-distillation loss with multi-crop - iBOT masked-image modeling loss - KoLeo regularization on [CLS] tokens - **Architectures:** - ViT-S (21M params): Patch size 14, embedding dimension 384, 6 heads, MLP FFN - ViT-B (86M params): Patch size 14, embedding dimension 768, 12 heads, MLP FFN - ViT-L (0.3B params): Patch size 14, embedding dimension 1024, 16 heads, MLP FFN - ViT-g (1.1B params): Patch size 14, embedding dimension 1536, 24 heads, SwiGLU FFN - **Distillation:** - Distillation follows the standard DINOv2 pretraining procedure, except the teacher is a pretrained ViT-g, frozen. ## Evaluation We refer users to the associated paper for the evaluation protocols.
model | ImageNet-1k | NYU-Depth v2 | SUN-RGBD | ADE20k | iNaturalist 2018 | Oxford-H | ||
---|---|---|---|---|---|---|---|---|
task | classif. (acc) | classif. (acc) | classif. V2 (acc) | depth (RMSE) | depth (RMSE) | segm. (mAP) | classif. (acc) | retrieval (mAP) |
k-NN | linear | linear | linear 4 layers |
NYU-D transfer | multiscale | linear | nearest neighbor | |
ViT-S/14 | 79.0% | 81.1% | 70.8% | 0.417 | 0.431 | 47.2 | 69.5% | 43.2 |
ViT-B/14 | 82.1% | 84.5% | 74.9% | 0.362 | 0.400 | 51.3 | 76.3% | 49.5 |
ViT-L/14 | 83.5% | 86.3% | 77.6% | 0.333 | 0.396 | 53.1 | 79.8% | 54.0 |
ViT-g/14 | 83.5% | 86.5% | 78.4% | 0.298 | 0.362 | 53.0 | 81.6% | 52.3 |