Spaces:
Runtime error
Runtime error
File size: 9,198 Bytes
f1dd031 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Tuple, Union
import mmcv
import numpy as np
try:
import seaborn as sns
except ImportError:
sns = None
from mmdet.registry import VISUALIZERS
from mmdet.structures import DetDataSample
from mmdet.structures.mask import bitmap_to_polygon
from mmdet.visualization.palette import _get_adaptive_scales
from mmengine.dist import master_only
from mmengine.structures import InstanceData, PixelData
from mmengine.visualization import Visualizer
def random_color(seed):
"""Random a color according to the input seed."""
if sns is None:
raise RuntimeError(
"motmetrics is not installed,\
please install it by: pip install seaborn"
)
np.random.seed(seed)
colors = sns.color_palette("tab20")
color = colors[np.random.choice(range(len(colors)))]
color = tuple([int(255 * c) for c in color])
return color
@VISUALIZERS.register_module()
class MasaTrackLocalVisualizer(Visualizer):
"""Tracking Local Visualizer for the MOT, VIS tasks.
Args:
name (str): Name of the instance. Defaults to 'visualizer'.
image (np.ndarray, optional): the origin image to draw. The format
should be RGB. Defaults to None.
vis_backends (list, optional): Visual backend config list.
Defaults to None.
save_dir (str, optional): Save file dir for all storage backends.
If it is None, the backend storage will not save any data.
line_width (int, float): The linewidth of lines.
Defaults to 3.
alpha (int, float): The transparency of bboxes or mask.
Defaults to 0.8.
"""
def __init__(
self,
name: str = "visualizer",
image: Optional[np.ndarray] = None,
vis_backends: Optional[Dict] = None,
save_dir: Optional[str] = None,
line_width: Union[int, float] = 5,
alpha: float = 0.8,
show_polygon: bool = False,
texts=None,
) -> None:
super().__init__(name, image, vis_backends, save_dir)
self.line_width = line_width
self.alpha = alpha
self.show_polygon = show_polygon
# Set default value. When calling
# `TrackLocalVisualizer().dataset_meta=xxx`,
# it will override the default value.
self.dataset_meta = {}
if texts is not None:
if isinstance(texts, str):
if not texts.endswith("."):
original_caption = texts + " . "
original_caption = original_caption.split(" . ")
class_names = list(filter(lambda x: len(x) > 0, original_caption))
else:
class_names = list(texts)
self.label_names = class_names
else:
self.label_names = None
def _draw_instances(
self, image: np.ndarray, instances: ["InstanceData"]
) -> np.ndarray:
"""Draw instances of GT or prediction.
Args:
image (np.ndarray): The image to draw.
instances (:obj:`InstanceData`): Data structure for
instance-level annotations or predictions.
Returns:
np.ndarray: the drawn image which channel is RGB.
"""
self.set_image(image)
classes = self.dataset_meta.get("classes", None)
# get colors and texts
# for the MOT and VIS tasks
colors = [random_color(_id) for _id in instances.instances_id]
# draw bboxes and texts
if "bboxes" in instances:
# draw bboxes
bboxes = instances.bboxes.clone()
labels = instances.labels.clone()
self.draw_bboxes(
bboxes,
edge_colors=colors,
alpha=self.alpha,
line_widths=self.line_width,
)
# draw texts
positions = bboxes[:, :2] - self.line_width
areas = (bboxes[:, 3] - bboxes[:, 1]) * (bboxes[:, 2] - bboxes[:, 0])
scales = _get_adaptive_scales(areas.cpu().numpy())
for i, (pos, label) in enumerate(zip(positions, labels)):
if self.label_names is not None:
label_text = self.label_names[label]
else:
label_text = (
classes[label] if classes is not None else f"class {label}"
)
if "instances_id" in instances:
label_text += f" | {instances.instances_id[i]}"
if "scores" in instances:
score = round(float(instances.scores[i]) * 100, 1)
label_text += f": {score}"
self.draw_texts(
label_text,
pos,
colors="black",
font_sizes=int(13 * scales[i]),
bboxes=[
{
"facecolor": [c / 255 for c in colors[i]],
"alpha": 0.8,
"pad": 0.7,
"edgecolor": "none",
}
],
)
# draw masks
if "masks" in instances:
masks = instances.masks
polygons = []
for i, mask in enumerate(masks):
contours, _ = bitmap_to_polygon(mask)
polygons.extend(contours)
if self.show_polygon:
self.draw_polygons(polygons, edge_colors="w", alpha=self.alpha)
self.draw_binary_masks(masks, colors=colors, alphas=self.alpha)
return self.get_image()
@master_only
def add_datasample(
self,
name: str,
image: np.ndarray,
data_sample: DetDataSample = None,
draw_gt: bool = True,
draw_pred: bool = True,
show: bool = False,
wait_time: int = 0,
# TODO: Supported in mmengine's Viusalizer.
out_file: Optional[str] = None,
pred_score_thr: float = 0.3,
vis_score=False,
step: int = 0,
fps=None,
) -> None:
"""Draw datasample and save to all backends.
- If GT and prediction are plotted at the same time, they are
displayed in a stitched image where the left image is the
ground truth and the right image is the prediction.
- If ``show`` is True, all storage backends are ignored, and
the images will be displayed in a local window.
- If ``out_file`` is specified, the drawn image will be
saved to ``out_file``. t is usually used when the display
is not available.
Args:
name (str): The image identifier.
image (np.ndarray): The image to draw.
data_sample (OptTrackSampleList): A data
sample that contain annotations and predictions.
Defaults to None.
draw_gt (bool): Whether to draw GT TrackDataSample.
Default to True.
draw_pred (bool): Whether to draw Prediction TrackDataSample.
Defaults to True.
show (bool): Whether to display the drawn image. Default to False.
wait_time (int): The interval of show (s). Defaults to 0.
out_file (str): Path to output file. Defaults to None.
pred_score_thr (float): The threshold to visualize the bboxes
and masks. Defaults to 0.3.
step (int): Global step value to record. Defaults to 0.
"""
gt_img_data = None
pred_img_data = None
if data_sample is not None:
data_sample = data_sample.cpu()
if draw_gt and data_sample is not None:
assert "gt_instances" in data_sample
gt_img_data = self._draw_instances(image, data_sample.gt_instances)
if draw_pred and data_sample is not None:
assert "pred_track_instances" in data_sample
pred_instances = data_sample.pred_track_instances
if "scores" in pred_instances:
pred_instances = pred_instances[
pred_instances.scores > pred_score_thr
].cpu()
pred_img_data = self._draw_instances(image, pred_instances)
if fps is not None:
self.draw_texts(
f"FPS: {fps: .1f}",
np.array([10, 10]),
colors="black",
font_sizes=15,
bboxes=[
{"facecolor": "w", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"}
],
)
if gt_img_data is not None and pred_img_data is not None:
drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
elif gt_img_data is not None:
drawn_img = gt_img_data
else:
drawn_img = pred_img_data
if show:
self.show(drawn_img, win_name=name, wait_time=wait_time)
if out_file is not None:
mmcv.imwrite(drawn_img[..., ::-1], out_file)
else:
self.add_image(name, drawn_img, step)
|