|
import os
|
|
if os.environ.get("SPACES_ZERO_GPU") is not None:
|
|
import spaces
|
|
else:
|
|
class spaces:
|
|
@staticmethod
|
|
def GPU(func):
|
|
def wrapper(*args, **kwargs):
|
|
return func(*args, **kwargs)
|
|
return wrapper
|
|
import gradio as gr
|
|
from gradio_imageslider import ImageSlider
|
|
import torch
|
|
torch.jit.script = lambda f: f
|
|
from hidiffusion import apply_hidiffusion
|
|
from diffusers import (
|
|
ControlNetModel,
|
|
StableDiffusionXLControlNetImg2ImgPipeline,
|
|
DDIMScheduler,
|
|
)
|
|
from controlnet_aux import AnylineDetector
|
|
from compel import Compel, ReturnedEmbeddingsType
|
|
from PIL import Image
|
|
import time
|
|
import numpy as np
|
|
|
|
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
|
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
dtype = torch.float16
|
|
|
|
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
|
|
|
|
print(f"device: {device}")
|
|
print(f"dtype: {dtype}")
|
|
print(f"low memory: {LOW_MEMORY}")
|
|
|
|
|
|
model = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
|
|
|
|
scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
|
|
|
|
|
|
|
|
controlnet = ControlNetModel.from_pretrained(
|
|
"TheMistoAI/MistoLine",
|
|
torch_dtype=torch.float16,
|
|
revision="refs/pr/3",
|
|
variant="fp16",
|
|
)
|
|
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
|
model,
|
|
controlnet=controlnet,
|
|
torch_dtype=dtype,
|
|
variant="fp16",
|
|
use_safetensors=True,
|
|
scheduler=scheduler,
|
|
)
|
|
|
|
compel = Compel(
|
|
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
|
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
|
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
|
requires_pooled=[False, True],
|
|
)
|
|
pipe = pipe.to(device)
|
|
|
|
if not IS_SPACES_ZERO:
|
|
apply_hidiffusion(pipe)
|
|
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.enable_vae_tiling()
|
|
|
|
anyline = AnylineDetector.from_pretrained(
|
|
"TheMistoAI/MistoLine", filename="MTEED.pth", subfolder="Anyline"
|
|
).to(device)
|
|
|
|
|
|
def pad_image(image):
|
|
w, h = image.size
|
|
if w == h:
|
|
return image
|
|
elif w > h:
|
|
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
|
|
pad_w = 0
|
|
pad_h = (w - h) // 2
|
|
new_image.paste(image, (0, pad_h))
|
|
return new_image
|
|
else:
|
|
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
|
|
pad_w = (h - w) // 2
|
|
pad_h = 0
|
|
new_image.paste(image, (pad_w, 0))
|
|
return new_image
|
|
|
|
|
|
@spaces.GPU(duration=120)
|
|
def predict(
|
|
input_image,
|
|
prompt,
|
|
negative_prompt,
|
|
seed,
|
|
guidance_scale=8.5,
|
|
scale=2,
|
|
controlnet_conditioning_scale=0.5,
|
|
strength=1.0,
|
|
controlnet_start=0.0,
|
|
controlnet_end=1.0,
|
|
guassian_sigma=2.0,
|
|
intensity_threshold=3,
|
|
progress=gr.Progress(track_tqdm=True),
|
|
):
|
|
if IS_SPACES_ZERO:
|
|
apply_hidiffusion(pipe)
|
|
if input_image is None:
|
|
raise gr.Error("Please upload an image.")
|
|
padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB")
|
|
conditioning, pooled = compel([prompt, negative_prompt])
|
|
generator = torch.manual_seed(seed)
|
|
last_time = time.time()
|
|
anyline_image = anyline(
|
|
padded_image,
|
|
detect_resolution=1280,
|
|
guassian_sigma=max(0.01, guassian_sigma),
|
|
intensity_threshold=intensity_threshold,
|
|
)
|
|
|
|
images = pipe(
|
|
image=padded_image,
|
|
control_image=anyline_image,
|
|
strength=strength,
|
|
prompt_embeds=conditioning[0:1],
|
|
pooled_prompt_embeds=pooled[0:1],
|
|
negative_prompt_embeds=conditioning[1:2],
|
|
negative_pooled_prompt_embeds=pooled[1:2],
|
|
width=1024 * scale,
|
|
height=1024 * scale,
|
|
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
|
controlnet_start=float(controlnet_start),
|
|
controlnet_end=float(controlnet_end),
|
|
generator=generator,
|
|
num_inference_steps=30,
|
|
guidance_scale=guidance_scale,
|
|
eta=1.0,
|
|
)
|
|
print(f"Time taken: {time.time() - last_time}")
|
|
return (padded_image, images.images[0]), padded_image, anyline_image
|
|
|
|
|
|
css = """
|
|
#intro{
|
|
# max-width: 32rem;
|
|
# text-align: center;
|
|
# margin: 0 auto;
|
|
}
|
|
"""
|
|
|
|
with gr.Blocks(css=css) as demo:
|
|
gr.Markdown(
|
|
"""
|
|
# Enhance This
|
|
### HiDiffusion SDXL
|
|
|
|
[HiDiffusion](https://github.com/megvii-research/HiDiffusion) enables higher-resolution image generation.
|
|
You can upload an initial image and prompt to generate an enhanced version.
|
|
SDXL Controlnet [TheMistoAI/MistoLine](https://huggingface.co/TheMistoAI/MistoLine)
|
|
[Duplicate Space](https://huggingface.co/spaces/radames/Enhance-This-HiDiffusion-SDXL?duplicate=true) to avoid the queue.
|
|
|
|
<small>
|
|
<b>Notes</b> The author advises against the term "super resolution" because it's more like image-to-image generation than enhancement, but it's still a lot of fun!
|
|
|
|
</small>
|
|
""",
|
|
elem_id="intro",
|
|
)
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
image_input = gr.Image(type="pil", label="Input Image")
|
|
prompt = gr.Textbox(
|
|
label="Prompt",
|
|
info="The prompt is very important to get the desired results. Please try to describe the image as best as you can. Accepts Compel Syntax",
|
|
)
|
|
negative_prompt = gr.Textbox(
|
|
label="Negative Prompt",
|
|
value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
|
)
|
|
seed = gr.Slider(
|
|
minimum=0,
|
|
maximum=2**64 - 1,
|
|
value=1415926535897932,
|
|
step=1,
|
|
label="Seed",
|
|
randomize=True,
|
|
)
|
|
with gr.Accordion(label="Advanced", open=False):
|
|
guidance_scale = gr.Slider(
|
|
minimum=0,
|
|
maximum=50,
|
|
value=8.5,
|
|
step=0.001,
|
|
label="Guidance Scale",
|
|
)
|
|
scale = gr.Slider(
|
|
minimum=1,
|
|
maximum=5,
|
|
value=2,
|
|
step=1,
|
|
label="Magnification Scale",
|
|
interactive=not IS_SPACE,
|
|
)
|
|
controlnet_conditioning_scale = gr.Slider(
|
|
minimum=0,
|
|
maximum=1,
|
|
step=0.001,
|
|
value=0.5,
|
|
label="ControlNet Conditioning Scale",
|
|
)
|
|
strength = gr.Slider(
|
|
minimum=0,
|
|
maximum=1,
|
|
step=0.001,
|
|
value=1,
|
|
label="Strength",
|
|
)
|
|
controlnet_start = gr.Slider(
|
|
minimum=0,
|
|
maximum=1,
|
|
step=0.001,
|
|
value=0.0,
|
|
label="ControlNet Start",
|
|
)
|
|
controlnet_end = gr.Slider(
|
|
minimum=0.0,
|
|
maximum=1.0,
|
|
step=0.001,
|
|
value=1.0,
|
|
label="ControlNet End",
|
|
)
|
|
guassian_sigma = gr.Slider(
|
|
minimum=0.01,
|
|
maximum=10.0,
|
|
step=0.1,
|
|
value=2.0,
|
|
label="(Anyline) Guassian Sigma",
|
|
)
|
|
intensity_threshold = gr.Slider(
|
|
minimum=0,
|
|
maximum=255,
|
|
step=1,
|
|
value=3,
|
|
label="(Anyline) Intensity Threshold",
|
|
)
|
|
|
|
btn = gr.Button()
|
|
with gr.Column(scale=2):
|
|
with gr.Group():
|
|
image_slider = ImageSlider(position=0.5)
|
|
with gr.Row():
|
|
padded_image = gr.Image(type="pil", label="Padded Image")
|
|
anyline_image = gr.Image(type="pil", label="Anyline Image")
|
|
inputs = [
|
|
image_input,
|
|
prompt,
|
|
negative_prompt,
|
|
seed,
|
|
guidance_scale,
|
|
scale,
|
|
controlnet_conditioning_scale,
|
|
strength,
|
|
controlnet_start,
|
|
controlnet_end,
|
|
guassian_sigma,
|
|
intensity_threshold,
|
|
]
|
|
outputs = [image_slider, padded_image, anyline_image]
|
|
btn.click(lambda x: None, inputs=None, outputs=image_slider).then(
|
|
fn=predict, inputs=inputs, outputs=outputs
|
|
)
|
|
gr.Examples(
|
|
fn=predict,
|
|
inputs=inputs,
|
|
outputs=outputs,
|
|
examples=[
|
|
[
|
|
"./examples/lara.jpeg",
|
|
"photography of lara croft 8k high definition award winning",
|
|
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
|
5436236241,
|
|
8.5,
|
|
2,
|
|
0.8,
|
|
1.0,
|
|
0.0,
|
|
0.9,
|
|
2,
|
|
3,
|
|
],
|
|
[
|
|
"./examples/cybetruck.jpeg",
|
|
"photo of tesla cybertruck futuristic car 8k high definition on a sand dune in mars, future",
|
|
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
|
383472451451,
|
|
8.5,
|
|
2,
|
|
0.8,
|
|
0.8,
|
|
0.0,
|
|
0.9,
|
|
2,
|
|
3,
|
|
],
|
|
[
|
|
"./examples/jesus.png",
|
|
"a photorealistic painting of Jesus Christ, 4k high definition",
|
|
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
|
13317204146129588000,
|
|
8.5,
|
|
2,
|
|
0.8,
|
|
0.8,
|
|
0.0,
|
|
0.9,
|
|
2,
|
|
3,
|
|
],
|
|
[
|
|
"./examples/anna-sullivan-DioLM8ViiO8-unsplash.jpg",
|
|
"A crowded stadium with enthusiastic fans watching a daytime sporting event, the stands filled with colorful attire and the sun casting a warm glow",
|
|
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
|
5623124123512,
|
|
8.5,
|
|
2,
|
|
0.8,
|
|
0.8,
|
|
0.0,
|
|
0.9,
|
|
2,
|
|
3,
|
|
],
|
|
[
|
|
"./examples/img_aef651cb-2919-499d-aa49-6d4e2e21a56e_1024.jpg",
|
|
"a large red flower on a black background 4k high definition",
|
|
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
|
23123412341234,
|
|
8.5,
|
|
2,
|
|
0.8,
|
|
0.8,
|
|
0.0,
|
|
0.9,
|
|
2,
|
|
3,
|
|
],
|
|
[
|
|
"./examples/huggingface.jpg",
|
|
"photo realistic huggingface human emoji costume, round, yellow, (human skin)+++ (human texture)+++",
|
|
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic, emoji cartoon, drawing, pixelated",
|
|
12312353423,
|
|
15.206,
|
|
2,
|
|
0.364,
|
|
0.8,
|
|
0.0,
|
|
0.9,
|
|
2,
|
|
3,
|
|
],
|
|
],
|
|
cache_examples="lazy",
|
|
)
|
|
|
|
|
|
demo.queue(api_open=True)
|
|
demo.launch(show_api=True)
|
|
|