|
import gradio as gr
|
|
from matplotlib import pyplot as plt
|
|
from mapper.utils.io import read_image
|
|
from mapper.utils.exif import EXIF
|
|
from mapper.utils.wrappers import Camera
|
|
from mapper.data.image import rectify_image, pad_image, resize_image
|
|
from mapper.utils.viz_2d import one_hot_argmax_to_rgb, plot_images
|
|
from mapper.module import GenericModule
|
|
from perspective2d import PerspectiveFields
|
|
import torch
|
|
import numpy as np
|
|
from typing import Optional, Tuple
|
|
from omegaconf import OmegaConf
|
|
|
|
description = """
|
|
<h1 align="center">
|
|
<ins>MapItAnywhere (MIA) </ins>
|
|
<br>
|
|
Empowering Bird’s Eye View Mapping using Large-scale Public Data
|
|
<br>
|
|
<h3 align="center">
|
|
<a href="https://mapitanywhere.github.io" target="_blank">Project Page</a> |
|
|
<a href="https://arxiv.org/abs/2109.08203" target="_blank">Paper</a> |
|
|
<a href="https://github.com/MapItAnywhere/MapItAnywhere" target="_blank">Code</a>
|
|
</h3>
|
|
<p align="center">
|
|
Mapper generates birds-eye-view maps from in-the-wild monocular first-person view images. You can try our demo by uploading your images or using the examples provided. Tip: You can also try out images across the world using <a href="https://www.mapillary.com/app" target="_blank">Mapillary</a> 😉 Also try out some examples that are taken in cities we have not trained on!
|
|
</p>
|
|
"""
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
cfg = OmegaConf.load("config.yaml")
|
|
|
|
class ImageCalibrator(PerspectiveFields):
|
|
def __init__(self, version: str = "Paramnet-360Cities-edina-centered"):
|
|
super().__init__(version)
|
|
self.eval()
|
|
|
|
def run(
|
|
self,
|
|
image_rgb: np.ndarray,
|
|
focal_length: Optional[float] = None,
|
|
exif: Optional[EXIF] = None,
|
|
) -> Tuple[Tuple[float, float], Camera]:
|
|
h, w, *_ = image_rgb.shape
|
|
if focal_length is None and exif is not None:
|
|
_, focal_ratio = exif.extract_focal()
|
|
if focal_ratio != 0:
|
|
focal_length = focal_ratio * max(h, w)
|
|
calib = self.inference(img_bgr=image_rgb[..., ::-1])
|
|
roll_pitch = (calib["pred_roll"].item(), calib["pred_pitch"].item())
|
|
if focal_length is None:
|
|
vfov = calib["pred_vfov"].item()
|
|
focal_length = h / 2 / np.tan(np.deg2rad(vfov) / 2)
|
|
|
|
camera = Camera.from_dict(
|
|
{
|
|
"model": "SIMPLE_PINHOLE",
|
|
"width": w,
|
|
"height": h,
|
|
"params": [focal_length, w / 2 + 0.5, h / 2 + 0.5],
|
|
}
|
|
)
|
|
return roll_pitch, camera
|
|
|
|
def preprocess_pipeline(image, roll_pitch, camera):
|
|
image = torch.from_numpy(image).float() / 255
|
|
image = image.permute(2, 0, 1).to(device)
|
|
camera = camera.to(device)
|
|
|
|
image, valid = rectify_image(image, camera.float(), -roll_pitch[0], -roll_pitch[1])
|
|
|
|
roll_pitch *= 0
|
|
|
|
image, _, camera, valid = resize_image(
|
|
image=image,
|
|
size=512,
|
|
camera=camera,
|
|
fn=max,
|
|
valid=valid
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
camera = torch.stack([camera])
|
|
|
|
return {
|
|
"image": image.unsqueeze(0).to(device),
|
|
"valid": valid.unsqueeze(0).to(device),
|
|
"camera": camera.float().to(device),
|
|
}
|
|
|
|
|
|
calibrator = ImageCalibrator().to(device)
|
|
model = GenericModule(cfg)
|
|
model = model.load_from_checkpoint("trained_weights/mapper-excl-ood.ckpt", strict=False, cfg=cfg)
|
|
model = model.to(device)
|
|
model = model.eval()
|
|
|
|
def run(input_img):
|
|
image_path = input_img.name
|
|
|
|
image = read_image(image_path)
|
|
with open(image_path, "rb") as fid:
|
|
exif = EXIF(fid, lambda: image.shape[:2])
|
|
|
|
gravity, camera = calibrator.run(image, exif=exif)
|
|
|
|
data = preprocess_pipeline(image, gravity, camera)
|
|
res = model(data)
|
|
|
|
prediction = res['output']
|
|
rgb_prediction = one_hot_argmax_to_rgb(prediction, 6).squeeze(0).permute(1, 2, 0).cpu().long().numpy()
|
|
valid = res['valid_bev'].squeeze(0)[..., :-1]
|
|
rgb_prediction[~valid.cpu().numpy()] = 255
|
|
|
|
|
|
|
|
plot_images([image, rgb_prediction], titles=["Input Image", "Top-Down Prediction"], pad=2, adaptive=True)
|
|
|
|
return plt.gcf()
|
|
|
|
|
|
examples = [
|
|
["examples/left_crossing.jpg"],
|
|
["examples/crossing.jpg"],
|
|
["examples/two_roads.jpg"],
|
|
["examples/japan_narrow_road.jpeg"],
|
|
["examples/zurich_crossing.jpg"],
|
|
["examples/night_road.jpg"],
|
|
["examples/night_crossing.jpg"],
|
|
]
|
|
|
|
demo = gr.Interface(
|
|
fn=run,
|
|
inputs=[
|
|
gr.File(file_types=["image"], label="Input Image")
|
|
],
|
|
outputs=[
|
|
gr.Plot(label="Prediction", format="png"),
|
|
],
|
|
description=description,
|
|
examples=examples)
|
|
demo.launch(share=True, server_name="0.0.0.0") |