|
import logging
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torchvision
|
|
from torchvision.models.feature_extraction import create_feature_extractor
|
|
|
|
from .base import BaseModel
|
|
from .schema import ResNetConfiguration
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class DecoderBlock(nn.Module):
|
|
def __init__(
|
|
self, previous, out, ksize=3, num_convs=1, norm=nn.BatchNorm2d, padding="zeros"
|
|
):
|
|
super().__init__()
|
|
layers = []
|
|
for i in range(num_convs):
|
|
conv = nn.Conv2d(
|
|
previous if i == 0 else out,
|
|
out,
|
|
kernel_size=ksize,
|
|
padding=ksize // 2,
|
|
bias=norm is None,
|
|
padding_mode=padding,
|
|
)
|
|
layers.append(conv)
|
|
if norm is not None:
|
|
layers.append(norm(out))
|
|
layers.append(nn.ReLU(inplace=True))
|
|
self.layers = nn.Sequential(*layers)
|
|
|
|
def forward(self, previous, skip):
|
|
_, _, hp, wp = previous.shape
|
|
_, _, hs, ws = skip.shape
|
|
scale = 2 ** np.round(np.log2(np.array([hs / hp, ws / wp])))
|
|
upsampled = nn.functional.interpolate(
|
|
previous, scale_factor=scale.tolist(), mode="bilinear", align_corners=False
|
|
)
|
|
|
|
|
|
|
|
|
|
_, _, hu, wu = upsampled.shape
|
|
_, _, hs, ws = skip.shape
|
|
if (hu <= hs) and (wu <= ws):
|
|
skip = skip[:, :, :hu, :wu]
|
|
elif (hu >= hs) and (wu >= ws):
|
|
skip = nn.functional.pad(skip, [0, wu - ws, 0, hu - hs])
|
|
else:
|
|
raise ValueError(
|
|
f"Inconsistent skip vs upsampled shapes: {(hs, ws)}, {(hu, wu)}"
|
|
)
|
|
|
|
return self.layers(skip) + upsampled
|
|
|
|
|
|
class FPN(nn.Module):
|
|
def __init__(self, in_channels_list, out_channels, **kw):
|
|
super().__init__()
|
|
self.first = nn.Conv2d(
|
|
in_channels_list[-1], out_channels, 1, padding=0, bias=True
|
|
)
|
|
self.blocks = nn.ModuleList(
|
|
[
|
|
DecoderBlock(c, out_channels, ksize=1, **kw)
|
|
for c in in_channels_list[::-1][1:]
|
|
]
|
|
)
|
|
self.out = nn.Sequential(
|
|
nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
|
|
nn.BatchNorm2d(out_channels),
|
|
nn.ReLU(inplace=True),
|
|
)
|
|
|
|
def forward(self, layers):
|
|
feats = None
|
|
for idx, x in enumerate(reversed(layers.values())):
|
|
if feats is None:
|
|
feats = self.first(x)
|
|
else:
|
|
feats = self.blocks[idx - 1](feats, x)
|
|
out = self.out(feats)
|
|
return out
|
|
|
|
|
|
def remove_conv_stride(conv):
|
|
conv_new = nn.Conv2d(
|
|
conv.in_channels,
|
|
conv.out_channels,
|
|
conv.kernel_size,
|
|
bias=conv.bias is not None,
|
|
stride=1,
|
|
padding=conv.padding,
|
|
)
|
|
conv_new.weight = conv.weight
|
|
conv_new.bias = conv.bias
|
|
return conv_new
|
|
|
|
|
|
class FeatureExtractor(BaseModel):
|
|
default_conf = {
|
|
"pretrained": True,
|
|
"input_dim": 3,
|
|
"output_dim": 128,
|
|
"encoder": "resnet50",
|
|
"remove_stride_from_first_conv": False,
|
|
"num_downsample": None,
|
|
"decoder_norm": "nn.BatchNorm2d",
|
|
"do_average_pooling": False,
|
|
"checkpointed": False,
|
|
}
|
|
mean = [0.485, 0.456, 0.406]
|
|
std = [0.229, 0.224, 0.225]
|
|
|
|
def freeze_encoder(self):
|
|
"""
|
|
Freeze the encoder part of the model, i.e., set requires_grad = False
|
|
for all parameters in the encoder.
|
|
"""
|
|
for param in self.encoder.parameters():
|
|
param.requires_grad = False
|
|
logger.debug("Encoder has been frozen.")
|
|
|
|
def unfreeze_encoder(self):
|
|
"""
|
|
Unfreeze the encoder part of the model, i.e., set requires_grad = True
|
|
for all parameters in the encoder.
|
|
"""
|
|
for param in self.encoder.parameters():
|
|
param.requires_grad = True
|
|
logger.debug("Encoder has been unfrozen.")
|
|
|
|
def build_encoder(self, conf: ResNetConfiguration):
|
|
assert isinstance(conf.encoder, str)
|
|
if conf.pretrained:
|
|
assert conf.input_dim == 3
|
|
Encoder = getattr(torchvision.models, conf.encoder)
|
|
|
|
kw = {}
|
|
if conf.encoder.startswith("resnet"):
|
|
layers = ["relu", "layer1", "layer2", "layer3", "layer4"]
|
|
kw["replace_stride_with_dilation"] = [False, False, False]
|
|
elif conf.encoder == "vgg13":
|
|
layers = [
|
|
"features.3",
|
|
"features.8",
|
|
"features.13",
|
|
"features.18",
|
|
"features.23",
|
|
]
|
|
elif conf.encoder == "vgg16":
|
|
layers = [
|
|
"features.3",
|
|
"features.8",
|
|
"features.15",
|
|
"features.22",
|
|
"features.29",
|
|
]
|
|
else:
|
|
raise NotImplementedError(conf.encoder)
|
|
|
|
if conf.num_downsample is not None:
|
|
layers = layers[: conf.num_downsample]
|
|
encoder = Encoder(weights="DEFAULT" if conf.pretrained else None, **kw)
|
|
encoder = create_feature_extractor(encoder, return_nodes=layers)
|
|
if conf.encoder.startswith("resnet") and conf.remove_stride_from_first_conv:
|
|
encoder.conv1 = remove_conv_stride(encoder.conv1)
|
|
|
|
if conf.do_average_pooling:
|
|
raise NotImplementedError
|
|
if conf.checkpointed:
|
|
raise NotImplementedError
|
|
|
|
return encoder, layers
|
|
|
|
def _init(self, conf):
|
|
|
|
self.register_buffer("mean_", torch.tensor(self.mean), persistent=False)
|
|
self.register_buffer("std_", torch.tensor(self.std), persistent=False)
|
|
|
|
|
|
self.encoder, self.layers = self.build_encoder(conf)
|
|
s = 128
|
|
inp = torch.zeros(1, 3, s, s)
|
|
features = list(self.encoder(inp).values())
|
|
self.skip_dims = [x.shape[1] for x in features]
|
|
self.layer_strides = [s / f.shape[-1] for f in features]
|
|
self.scales = [self.layer_strides[0]]
|
|
|
|
|
|
norm = eval(conf.decoder_norm) if conf.decoder_norm else None
|
|
self.decoder = FPN(self.skip_dims, out_channels=conf.output_dim, norm=norm)
|
|
|
|
logger.debug(
|
|
"Built feature extractor with layers {name:dim:stride}:\n"
|
|
f"{list(zip(self.layers, self.skip_dims, self.layer_strides))}\n"
|
|
f"and output scales {self.scales}."
|
|
)
|
|
|
|
def _forward(self, data):
|
|
image = data["image"]
|
|
image = (image - self.mean_[:, None, None]) / self.std_[:, None, None]
|
|
|
|
skip_features = self.encoder(image)
|
|
output = self.decoder(skip_features)
|
|
return output, data['camera']
|
|
|