|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
import torch
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.patches as mpatches
|
|
|
|
def features_to_RGB(*Fs, masks=None, skip=1):
|
|
"""Project a list of d-dimensional feature maps to RGB colors using PCA."""
|
|
from sklearn.decomposition import PCA
|
|
|
|
def normalize(x):
|
|
return x / np.linalg.norm(x, axis=-1, keepdims=True)
|
|
|
|
if masks is not None:
|
|
assert len(Fs) == len(masks)
|
|
|
|
flatten = []
|
|
for i, F in enumerate(Fs):
|
|
c, h, w = F.shape
|
|
F = np.rollaxis(F, 0, 3)
|
|
F_flat = F.reshape(-1, c)
|
|
if masks is not None and masks[i] is not None:
|
|
mask = masks[i]
|
|
assert mask.shape == F.shape[:2]
|
|
F_flat = F_flat[mask.reshape(-1)]
|
|
flatten.append(F_flat)
|
|
flatten = np.concatenate(flatten, axis=0)
|
|
flatten = normalize(flatten)
|
|
|
|
pca = PCA(n_components=3)
|
|
if skip > 1:
|
|
pca.fit(flatten[::skip])
|
|
flatten = pca.transform(flatten)
|
|
else:
|
|
flatten = pca.fit_transform(flatten)
|
|
flatten = (normalize(flatten) + 1) / 2
|
|
|
|
Fs_rgb = []
|
|
for i, F in enumerate(Fs):
|
|
h, w = F.shape[-2:]
|
|
if masks is None or masks[i] is None:
|
|
F_rgb, flatten = np.split(flatten, [h * w], axis=0)
|
|
F_rgb = F_rgb.reshape((h, w, 3))
|
|
else:
|
|
F_rgb = np.zeros((h, w, 3))
|
|
indices = np.where(masks[i])
|
|
F_rgb[indices], flatten = np.split(flatten, [len(indices[0])], axis=0)
|
|
F_rgb = np.concatenate([F_rgb, masks[i][..., None]], axis=-1)
|
|
Fs_rgb.append(F_rgb)
|
|
assert flatten.shape[0] == 0, flatten.shape
|
|
return Fs_rgb
|
|
|
|
|
|
def one_hot_argmax_to_rgb(y, num_class):
|
|
'''
|
|
Args:
|
|
probs: (B, C, H, W)
|
|
num_class: int
|
|
0: road 0
|
|
1: crossing 1
|
|
2: explicit_pedestrian 2
|
|
4: building
|
|
6: terrain
|
|
7: parking `
|
|
|
|
'''
|
|
|
|
class_colors = {
|
|
'road': (68, 68, 68),
|
|
'crossing': (244, 162, 97),
|
|
'explicit_pedestrian': (233, 196, 106),
|
|
|
|
'building': (231, 111, 81),
|
|
'terrain': (42, 157, 143),
|
|
'parking': (204, 204, 204),
|
|
'predicted_void': (255, 255, 255)
|
|
}
|
|
class_colors = class_colors.values()
|
|
class_colors = [torch.tensor(x).float() for x in class_colors]
|
|
|
|
threshold = 0.25
|
|
argmaxed = torch.argmax((y > threshold).float(), dim=1)
|
|
argmaxed[torch.all(y <= threshold, dim=1)] = num_class
|
|
|
|
|
|
seg_rgb = torch.ones(
|
|
(
|
|
argmaxed.shape[0],
|
|
3,
|
|
argmaxed.shape[1],
|
|
argmaxed.shape[2],
|
|
)
|
|
) * 255
|
|
for i in range(num_class + 1):
|
|
seg_rgb[:, 0, :, :][argmaxed == i] = class_colors[i][0]
|
|
seg_rgb[:, 1, :, :][argmaxed == i] = class_colors[i][1]
|
|
seg_rgb[:, 2, :, :][argmaxed == i] = class_colors[i][2]
|
|
|
|
return seg_rgb
|
|
|
|
def plot_images(imgs, titles=None, cmaps="gray", dpi=100, pad=0.5, adaptive=True):
|
|
"""Plot a set of images horizontally.
|
|
Args:
|
|
imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
|
|
titles: a list of strings, as titles for each image.
|
|
cmaps: colormaps for monochrome images.
|
|
adaptive: whether the figure size should fit the image aspect ratios.
|
|
"""
|
|
n = len(imgs)
|
|
if not isinstance(cmaps, (list, tuple)):
|
|
cmaps = [cmaps] * n
|
|
|
|
if adaptive:
|
|
ratios = [i.shape[1] / i.shape[0] for i in imgs]
|
|
else:
|
|
ratios = [4 / 3] * n
|
|
figsize = [sum(ratios) * 4.5, 4.5]
|
|
fig, ax = plt.subplots(
|
|
1, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios}
|
|
)
|
|
if n == 1:
|
|
ax = [ax]
|
|
for i in range(n):
|
|
ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
|
|
ax[i].get_yaxis().set_ticks([])
|
|
ax[i].get_xaxis().set_ticks([])
|
|
ax[i].set_axis_off()
|
|
for spine in ax[i].spines.values():
|
|
spine.set_visible(False)
|
|
if titles:
|
|
ax[i].set_title(titles[i])
|
|
|
|
|
|
class_colors = {
|
|
'Road': (68, 68, 68),
|
|
'Crossing': (244, 162, 97),
|
|
'Sidewalk': (233, 196, 106),
|
|
'Building': (231, 111, 81),
|
|
'Terrain': (42, 157, 143),
|
|
'Parking': (204, 204, 204),
|
|
}
|
|
patches = [mpatches.Patch(color=[c/255.0 for c in color], label=label) for label, color in class_colors.items()]
|
|
plt.legend(handles=patches, loc='upper center', bbox_to_anchor=(0.5, -0.05), ncol=3)
|
|
|
|
fig.tight_layout(pad=pad) |