Spaces:
Running
Running
Upload 13 files
Browse files- README.md +1 -1
- app.py +119 -89
- multit2i.py +502 -472
- requirements.txt +2 -5
- tagger/tagger.py +21 -21
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🖼️❤
|
|
4 |
colorFrom: red
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
short_description: Text-to-Image
|
|
|
4 |
colorFrom: red
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.0.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
short_description: Text-to-Image
|
app.py
CHANGED
@@ -3,7 +3,7 @@ from model import models
|
|
3 |
from multit2i import (load_models, infer_fn, infer_rand_fn, save_gallery,
|
4 |
change_model, warm_model, get_model_info_md, loaded_models,
|
5 |
get_positive_prefix, get_positive_suffix, get_negative_prefix, get_negative_suffix,
|
6 |
-
get_recom_prompt_type, set_recom_prompt_preset, get_tag_type)
|
7 |
from tagger.tagger import (predict_tags_wd, remove_specific_prompt, convert_danbooru_to_e621_prompt,
|
8 |
insert_recom_prompt, compose_prompt_to_copy)
|
9 |
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
|
@@ -22,97 +22,124 @@ css = """
|
|
22 |
"""
|
23 |
|
24 |
with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
|
25 |
-
with gr.
|
26 |
-
with gr.
|
27 |
-
with gr.
|
28 |
-
with gr.
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
with gr.Row():
|
32 |
-
|
33 |
-
|
34 |
-
tagger_tag_type = gr.Radio(label="Convert tags to", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
|
35 |
with gr.Row():
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
with gr.Row():
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
v2_copy = gr.Button(value="Copy to clipboard", variant="secondary", size="sm", interactive=False)
|
51 |
with gr.Row():
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
61 |
-
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
62 |
with gr.Row():
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
with gr.Group():
|
88 |
-
results = gr.Gallery(label="Gallery", elem_classes="gallery", interactive=False, show_download_button=True, show_share_button=False,
|
89 |
-
container=True, format="png", object_fit="cover", columns=2, rows=2)
|
90 |
-
image_files = gr.Files(label="Download", interactive=False)
|
91 |
-
clear_results = gr.Button("Clear Gallery / Download 🗑️", variant="secondary")
|
92 |
-
with gr.Column():
|
93 |
-
examples = gr.Examples(
|
94 |
-
examples = [
|
95 |
-
["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
|
96 |
-
["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
|
97 |
-
["kafuu chino, 1girl, solo"],
|
98 |
-
["1girl"],
|
99 |
-
["beautiful sunset"],
|
100 |
-
],
|
101 |
-
inputs=[prompt],
|
102 |
-
)
|
103 |
-
gr.Markdown(
|
104 |
-
f"""This demo was created in reference to the following demos.<br>
|
105 |
-
[Nymbo/Flood](https://huggingface.co/spaces/Nymbo/Flood),
|
106 |
-
[Yntec/ToyWorldXL](https://huggingface.co/spaces/Yntec/ToyWorldXL),
|
107 |
-
[Yntec/Diffusion80XX](https://huggingface.co/spaces/Yntec/Diffusion80XX).
|
108 |
-
"""
|
109 |
-
)
|
110 |
-
gr.DuplicateButton(value="Duplicate Space")
|
111 |
-
gr.Markdown(f"Just a few edits to *model.py* are all it takes to complete your own collection.")
|
112 |
|
113 |
-
gr.on(triggers=[run_button.click, prompt.submit, random_button.click], fn=lambda: gr.update(interactive=True), inputs=None, outputs=stop_button, show_api=False)
|
114 |
model_name.change(change_model, [model_name], [model_info], queue=False, show_api=False)\
|
115 |
-
.success(warm_model, [model_name], None, queue=
|
116 |
for i, o in enumerate(output):
|
117 |
img_i = gr.Number(i, visible=False)
|
118 |
image_num.change(lambda i, n: gr.update(visible = (i < n)), [img_i, image_num], o, show_api=False)
|
@@ -120,19 +147,22 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
|
|
120 |
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
|
121 |
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
|
122 |
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
|
123 |
-
outputs=[o], queue=
|
124 |
gen_event2 = gr.on(triggers=[random_button.click],
|
125 |
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_rand_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
|
126 |
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
|
127 |
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
|
128 |
-
outputs=[o], queue=
|
129 |
o.change(save_gallery, [o, results], [results, image_files], show_api=False)
|
130 |
-
stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event, gen_event2], show_api=False)
|
131 |
|
132 |
-
clear_prompt.click(lambda: None, None, [prompt], queue=False, show_api=False)
|
133 |
clear_results.click(lambda: (None, None), None, [results, image_files], queue=False, show_api=False)
|
134 |
recom_prompt_preset.change(set_recom_prompt_preset, [recom_prompt_preset],
|
135 |
[positive_prefix, positive_suffix, negative_prefix, negative_suffix], queue=False, show_api=False)
|
|
|
|
|
|
|
136 |
|
137 |
random_prompt.click(
|
138 |
v2_random_prompt, [prompt, v2_series, v2_character, v2_rating, v2_aspect_ratio, v2_length,
|
@@ -151,5 +181,5 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
|
|
151 |
).success(insert_recom_prompt, [prompt, neg_prompt, tagger_recom_prompt], [prompt, neg_prompt], queue=False, show_api=False,
|
152 |
).success(compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False)
|
153 |
|
154 |
-
demo.queue(default_concurrency_limit=200, max_size=200)
|
155 |
demo.launch(max_threads=400)
|
|
|
3 |
from multit2i import (load_models, infer_fn, infer_rand_fn, save_gallery,
|
4 |
change_model, warm_model, get_model_info_md, loaded_models,
|
5 |
get_positive_prefix, get_positive_suffix, get_negative_prefix, get_negative_suffix,
|
6 |
+
get_recom_prompt_type, set_recom_prompt_preset, get_tag_type, randomize_seed, translate_to_en)
|
7 |
from tagger.tagger import (predict_tags_wd, remove_specific_prompt, convert_danbooru_to_e621_prompt,
|
8 |
insert_recom_prompt, compose_prompt_to_copy)
|
9 |
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
|
|
|
22 |
"""
|
23 |
|
24 |
with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
|
25 |
+
with gr.Tab("Image Generator"):
|
26 |
+
with gr.Row():
|
27 |
+
with gr.Column(scale=10):
|
28 |
+
with gr.Group():
|
29 |
+
with gr.Accordion("Prompt from Image File", open=False):
|
30 |
+
tagger_image = gr.Image(label="Input image", type="pil", format="png", sources=["upload", "clipboard"], height=256)
|
31 |
+
with gr.Accordion(label="Advanced options", open=False):
|
32 |
+
with gr.Row():
|
33 |
+
tagger_general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
|
34 |
+
tagger_character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
|
35 |
+
tagger_tag_type = gr.Radio(label="Convert tags to", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
|
36 |
+
with gr.Row():
|
37 |
+
tagger_recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
|
38 |
+
tagger_keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
|
39 |
+
tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
|
40 |
+
tagger_generate_from_image = gr.Button(value="Generate Tags from Image", variant="secondary")
|
41 |
+
with gr.Accordion("Prompt Transformer", open=False):
|
42 |
with gr.Row():
|
43 |
+
v2_character = gr.Textbox(label="Character", placeholder="hatsune miku", scale=2)
|
44 |
+
v2_series = gr.Textbox(label="Series", placeholder="vocaloid", scale=2)
|
|
|
45 |
with gr.Row():
|
46 |
+
v2_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="sfw")
|
47 |
+
v2_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square", visible=False)
|
48 |
+
v2_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="long")
|
49 |
+
with gr.Row():
|
50 |
+
v2_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")
|
51 |
+
v2_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
|
52 |
+
v2_tag_type = gr.Radio(label="Tag Type", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru", visible=False)
|
53 |
+
v2_model = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
|
54 |
+
v2_copy = gr.Button(value="Copy to clipboard", variant="secondary", size="sm", interactive=False)
|
55 |
+
random_prompt = gr.Button(value="Extend 🎲", variant="secondary")
|
56 |
+
prompt = gr.Text(label="Prompt", lines=2, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
|
57 |
+
with gr.Accordion("Advanced options", open=False):
|
58 |
+
neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="")
|
59 |
+
with gr.Row():
|
60 |
+
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
61 |
+
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
62 |
+
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
|
63 |
+
with gr.Row():
|
64 |
+
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
|
65 |
+
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
66 |
+
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
|
67 |
+
recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
|
68 |
+
with gr.Row():
|
69 |
+
positive_prefix = gr.CheckboxGroup(label="Use Positive Prefix", choices=get_positive_prefix(), value=[])
|
70 |
+
positive_suffix = gr.CheckboxGroup(label="Use Positive Suffix", choices=get_positive_suffix(), value=["Common"])
|
71 |
+
negative_prefix = gr.CheckboxGroup(label="Use Negative Prefix", choices=get_negative_prefix(), value=[])
|
72 |
+
negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"])
|
73 |
with gr.Row():
|
74 |
+
image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=2)
|
75 |
+
trans_prompt = gr.Button(value="Translate 📝", variant="secondary", size="sm", scale=2)
|
76 |
+
clear_prompt = gr.Button(value="Clear 🗑️", variant="secondary", size="sm", scale=1)
|
77 |
+
|
|
|
78 |
with gr.Row():
|
79 |
+
run_button = gr.Button("Generate Image", variant="primary", scale=6)
|
80 |
+
random_button = gr.Button("Random Model 🎲", variant="secondary", scale=3)
|
81 |
+
#stop_button = gr.Button('Stop', variant="stop", interactive=False, scale=1)
|
82 |
+
with gr.Group():
|
83 |
+
model_name = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0], allow_custom_value=True)
|
84 |
+
model_info = gr.Markdown(value=get_model_info_md(list(loaded_models.keys())[0]), elem_classes="model_info")
|
85 |
+
with gr.Column(scale=10):
|
86 |
+
with gr.Group():
|
|
|
|
|
87 |
with gr.Row():
|
88 |
+
output = [gr.Image(label='', elem_classes="output", type="filepath", format="png",
|
89 |
+
show_download_button=True, show_share_button=False, show_label=False,
|
90 |
+
interactive=False, min_width=80, visible=True, width=112, height=112) for _ in range(max_images)]
|
91 |
+
with gr.Group():
|
92 |
+
results = gr.Gallery(label="Gallery", elem_classes="gallery", interactive=False, show_download_button=True, show_share_button=False,
|
93 |
+
container=True, format="png", object_fit="cover", columns=2, rows=2)
|
94 |
+
image_files = gr.Files(label="Download", interactive=False)
|
95 |
+
clear_results = gr.Button("Clear Gallery / Download 🗑️", variant="secondary")
|
96 |
+
with gr.Column():
|
97 |
+
examples = gr.Examples(
|
98 |
+
examples = [
|
99 |
+
["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
|
100 |
+
["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
|
101 |
+
["kafuu chino, 1girl, solo"],
|
102 |
+
["1girl"],
|
103 |
+
["beautiful sunset"],
|
104 |
+
],
|
105 |
+
inputs=[prompt],
|
106 |
+
cache_examples=False,
|
107 |
+
)
|
108 |
+
with gr.Tab("PNG Info"):
|
109 |
+
def extract_exif_data(image):
|
110 |
+
if image is None: return ""
|
111 |
+
try:
|
112 |
+
metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment']
|
113 |
+
for key in metadata_keys:
|
114 |
+
if key in image.info:
|
115 |
+
return image.info[key]
|
116 |
+
return str(image.info)
|
117 |
+
except Exception as e:
|
118 |
+
return f"Error extracting metadata: {str(e)}"
|
119 |
+
with gr.Row():
|
120 |
+
with gr.Column():
|
121 |
+
image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])
|
122 |
+
with gr.Column():
|
123 |
+
result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99)
|
124 |
|
125 |
+
image_metadata.change(
|
126 |
+
fn=extract_exif_data,
|
127 |
+
inputs=[image_metadata],
|
128 |
+
outputs=[result_metadata],
|
129 |
+
)
|
130 |
+
gr.Markdown(
|
131 |
+
f"""This demo was created in reference to the following demos.<br>
|
132 |
+
[Nymbo/Flood](https://huggingface.co/spaces/Nymbo/Flood),
|
133 |
+
[Yntec/ToyWorldXL](https://huggingface.co/spaces/Yntec/ToyWorldXL),
|
134 |
+
[Yntec/Diffusion80XX](https://huggingface.co/spaces/Yntec/Diffusion80XX).
|
135 |
+
"""
|
136 |
+
)
|
137 |
+
gr.DuplicateButton(value="Duplicate Space")
|
138 |
+
gr.Markdown(f"Just a few edits to *model.py* are all it takes to complete your own collection.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
+
#gr.on(triggers=[run_button.click, prompt.submit, random_button.click], fn=lambda: gr.update(interactive=True), inputs=None, outputs=stop_button, show_api=False)
|
141 |
model_name.change(change_model, [model_name], [model_info], queue=False, show_api=False)\
|
142 |
+
.success(warm_model, [model_name], None, queue=False, show_api=False)
|
143 |
for i, o in enumerate(output):
|
144 |
img_i = gr.Number(i, visible=False)
|
145 |
image_num.change(lambda i, n: gr.update(visible = (i < n)), [img_i, image_num], o, show_api=False)
|
|
|
147 |
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
|
148 |
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
|
149 |
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
|
150 |
+
outputs=[o], queue=False, show_api=False) # Be sure to delete ", queue=False" when activating the stop button
|
151 |
gen_event2 = gr.on(triggers=[random_button.click],
|
152 |
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_rand_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
|
153 |
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
|
154 |
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
|
155 |
+
outputs=[o], queue=False, show_api=False) # Be sure to delete ", queue=False" when activating the stop button
|
156 |
o.change(save_gallery, [o, results], [results, image_files], show_api=False)
|
157 |
+
#stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event, gen_event2], show_api=False)
|
158 |
|
159 |
+
clear_prompt.click(lambda: (None, None, None, None), None, [prompt, neg_prompt, v2_character, v2_series], queue=False, show_api=False)
|
160 |
clear_results.click(lambda: (None, None), None, [results, image_files], queue=False, show_api=False)
|
161 |
recom_prompt_preset.change(set_recom_prompt_preset, [recom_prompt_preset],
|
162 |
[positive_prefix, positive_suffix, negative_prefix, negative_suffix], queue=False, show_api=False)
|
163 |
+
seed_rand.click(randomize_seed, None, [seed], queue=False, show_api=False)
|
164 |
+
trans_prompt.click(translate_to_en, [prompt], [prompt], queue=False, show_api=False)\
|
165 |
+
.then(translate_to_en, [neg_prompt], [neg_prompt], queue=False, show_api=False)
|
166 |
|
167 |
random_prompt.click(
|
168 |
v2_random_prompt, [prompt, v2_series, v2_character, v2_rating, v2_aspect_ratio, v2_length,
|
|
|
181 |
).success(insert_recom_prompt, [prompt, neg_prompt, tagger_recom_prompt], [prompt, neg_prompt], queue=False, show_api=False,
|
182 |
).success(compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False)
|
183 |
|
184 |
+
#demo.queue(default_concurrency_limit=200, max_size=200)
|
185 |
demo.launch(max_threads=400)
|
multit2i.py
CHANGED
@@ -1,472 +1,502 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import asyncio
|
3 |
-
from threading import RLock
|
4 |
-
from pathlib import Path
|
5 |
-
from huggingface_hub import InferenceClient
|
6 |
-
import os
|
7 |
-
|
8 |
-
|
9 |
-
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
|
10 |
-
server_timeout = 600
|
11 |
-
inference_timeout = 300
|
12 |
-
|
13 |
-
|
14 |
-
lock = RLock()
|
15 |
-
loaded_models = {}
|
16 |
-
model_info_dict = {}
|
17 |
-
|
18 |
-
|
19 |
-
def to_list(s):
|
20 |
-
return [x.strip() for x in s.split(",")]
|
21 |
-
|
22 |
-
|
23 |
-
def list_sub(a, b):
|
24 |
-
return [e for e in a if e not in b]
|
25 |
-
|
26 |
-
|
27 |
-
def list_uniq(l):
|
28 |
-
return sorted(set(l), key=l.index)
|
29 |
-
|
30 |
-
|
31 |
-
def is_repo_name(s):
|
32 |
-
import re
|
33 |
-
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
|
34 |
-
|
35 |
-
|
36 |
-
def get_status(model_name: str):
|
37 |
-
from huggingface_hub import InferenceClient
|
38 |
-
client = InferenceClient(token=HF_TOKEN, timeout=10)
|
39 |
-
return client.get_model_status(model_name)
|
40 |
-
|
41 |
-
|
42 |
-
def is_loadable(model_name: str, force_gpu: bool = False):
|
43 |
-
try:
|
44 |
-
status = get_status(model_name)
|
45 |
-
except Exception as e:
|
46 |
-
print(e)
|
47 |
-
print(f"Couldn't load {model_name}.")
|
48 |
-
return False
|
49 |
-
gpu_state = isinstance(status.compute_type, dict) and "gpu" in status.compute_type.keys()
|
50 |
-
if status is None or status.state not in ["Loadable", "Loaded"] or (force_gpu and not gpu_state):
|
51 |
-
print(f"Couldn't load {model_name}. Model state:'{status.state}', GPU:{gpu_state}")
|
52 |
-
return status is not None and status.state in ["Loadable", "Loaded"] and (not force_gpu or gpu_state)
|
53 |
-
|
54 |
-
|
55 |
-
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
|
56 |
-
from huggingface_hub import HfApi
|
57 |
-
api = HfApi(token=HF_TOKEN)
|
58 |
-
default_tags = ["diffusers"]
|
59 |
-
if not sort: sort = "last_modified"
|
60 |
-
limit = limit * 20 if check_status and force_gpu else limit * 5
|
61 |
-
models = []
|
62 |
-
try:
|
63 |
-
model_infos = api.list_models(author=author, #task="text-to-image",
|
64 |
-
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
|
65 |
-
except Exception as e:
|
66 |
-
print(f"Error: Failed to list models.")
|
67 |
-
print(e)
|
68 |
-
return models
|
69 |
-
for model in model_infos:
|
70 |
-
if not model.private and not model.gated or HF_TOKEN is not None:
|
71 |
-
loadable = is_loadable(model.id, force_gpu) if check_status else True
|
72 |
-
if not_tag and not_tag in model.tags or not loadable: continue
|
73 |
-
models.append(model.id)
|
74 |
-
if len(models) == limit: break
|
75 |
-
return models
|
76 |
-
|
77 |
-
|
78 |
-
def get_t2i_model_info_dict(repo_id: str):
|
79 |
-
from huggingface_hub import HfApi
|
80 |
-
api = HfApi(token=HF_TOKEN)
|
81 |
-
info = {"md": "None"}
|
82 |
-
try:
|
83 |
-
if not is_repo_name(repo_id) or not api.repo_exists(repo_id=repo_id): return info
|
84 |
-
model = api.model_info(repo_id=repo_id, token=HF_TOKEN)
|
85 |
-
except Exception as e:
|
86 |
-
print(f"Error: Failed to get {repo_id}'s info.")
|
87 |
-
print(e)
|
88 |
-
return info
|
89 |
-
if model.private or model.gated and HF_TOKEN is None: return info
|
90 |
-
try:
|
91 |
-
tags = model.tags
|
92 |
-
except Exception as e:
|
93 |
-
print(e)
|
94 |
-
return info
|
95 |
-
if not 'diffusers' in model.tags: return info
|
96 |
-
if 'diffusers:FluxPipeline' in tags: info["ver"] = "FLUX.1"
|
97 |
-
elif 'diffusers:StableDiffusionXLPipeline' in tags: info["ver"] = "SDXL"
|
98 |
-
elif 'diffusers:StableDiffusionPipeline' in tags: info["ver"] = "SD1.5"
|
99 |
-
elif 'diffusers:StableDiffusion3Pipeline' in tags: info["ver"] = "SD3"
|
100 |
-
else: info["ver"] = "Other"
|
101 |
-
info["url"] = f"https://huggingface.co/{repo_id}/"
|
102 |
-
info["tags"] = model.card_data.tags if model.card_data and model.card_data.tags else []
|
103 |
-
info["downloads"] = model.downloads
|
104 |
-
info["likes"] = model.likes
|
105 |
-
info["last_modified"] = model.last_modified.strftime("lastmod: %Y-%m-%d")
|
106 |
-
un_tags = ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']
|
107 |
-
descs = [info["ver"]] + list_sub(info["tags"], un_tags) + [f'DLs: {info["downloads"]}'] + [f'❤: {info["likes"]}'] + [info["last_modified"]]
|
108 |
-
info["md"] = f'Model Info: {", ".join(descs)} [Model Repo]({info["url"]})'
|
109 |
-
return info
|
110 |
-
|
111 |
-
|
112 |
-
def rename_image(image_path: str | None, model_name: str, save_path: str | None = None):
|
113 |
-
|
114 |
-
from datetime import datetime, timezone, timedelta
|
115 |
-
if image_path is None: return None
|
116 |
-
dt_now = datetime.now(timezone(timedelta(hours=9)))
|
117 |
-
filename = f"{model_name.split('/')[-1]}_{dt_now.strftime('%Y%m%d_%H%M%S')}.png"
|
118 |
-
try:
|
119 |
-
if Path(image_path).exists():
|
120 |
-
png_path = "image.png"
|
121 |
-
|
122 |
-
if save_path is not None:
|
123 |
-
new_path = str(Path(png_path).resolve().rename(Path(save_path).resolve()))
|
124 |
-
else:
|
125 |
-
new_path = str(Path(png_path).resolve().rename(Path(filename).resolve()))
|
126 |
-
return new_path
|
127 |
-
else:
|
128 |
-
return None
|
129 |
-
except Exception as e:
|
130 |
-
print(e)
|
131 |
-
return None
|
132 |
-
|
133 |
-
|
134 |
-
def save_gallery(image_path: str | None, images: list[tuple] | None):
|
135 |
-
if images is None: images = []
|
136 |
-
files = [i[0] for i in images]
|
137 |
-
if image_path is None: return images, files
|
138 |
-
files.insert(0, str(image_path))
|
139 |
-
images.insert(0, (str(image_path), Path(image_path).stem))
|
140 |
-
return images, files
|
141 |
-
|
142 |
-
|
143 |
-
# https://github.com/gradio-app/gradio/blob/main/gradio/external.py
|
144 |
-
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
145 |
-
from typing import Literal
|
146 |
-
def load_from_model(model_name: str, hf_token: str | Literal[False] | None = None):
|
147 |
-
import httpx
|
148 |
-
import huggingface_hub
|
149 |
-
from gradio.exceptions import ModelNotFoundError, TooManyRequestsError
|
150 |
-
model_url = f"https://huggingface.co/{model_name}"
|
151 |
-
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
|
152 |
-
print(f"Fetching model from: {model_url}")
|
153 |
-
|
154 |
-
headers = ({} if hf_token in [False, None] else {"Authorization": f"Bearer {hf_token}"})
|
155 |
-
response = httpx.request("GET", api_url, headers=headers)
|
156 |
-
if response.status_code != 200:
|
157 |
-
raise ModelNotFoundError(
|
158 |
-
f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter."
|
159 |
-
)
|
160 |
-
p = response.json().get("pipeline_tag")
|
161 |
-
if p != "text-to-image": raise ModelNotFoundError(f"This model isn't for text-to-image or unsupported: {model_name}.")
|
162 |
-
headers["X-Wait-For-Model"] = "true"
|
163 |
-
client = huggingface_hub.InferenceClient(model=model_name, headers=headers,
|
164 |
-
token=hf_token, timeout=server_timeout)
|
165 |
-
inputs = gr.components.Textbox(label="Input")
|
166 |
-
outputs = gr.components.Image(label="Output")
|
167 |
-
fn = client.text_to_image
|
168 |
-
|
169 |
-
def query_huggingface_inference_endpoints(*data, **kwargs):
|
170 |
-
try:
|
171 |
-
data = fn(*data, **kwargs) # type: ignore
|
172 |
-
except huggingface_hub.utils.HfHubHTTPError as e:
|
173 |
-
if "429" in str(e):
|
174 |
-
raise TooManyRequestsError() from e
|
175 |
-
except Exception as e:
|
176 |
-
raise Exception() from e
|
177 |
-
return data
|
178 |
-
|
179 |
-
interface_info = {
|
180 |
-
"fn": query_huggingface_inference_endpoints,
|
181 |
-
"inputs": inputs,
|
182 |
-
"outputs": outputs,
|
183 |
-
"title": model_name,
|
184 |
-
}
|
185 |
-
return gr.Interface(**interface_info)
|
186 |
-
|
187 |
-
|
188 |
-
def load_model(model_name: str):
|
189 |
-
global loaded_models
|
190 |
-
global model_info_dict
|
191 |
-
if model_name in loaded_models.keys(): return loaded_models[model_name]
|
192 |
-
try:
|
193 |
-
loaded_models[model_name] = load_from_model(model_name, hf_token=HF_TOKEN)
|
194 |
-
print(f"Loaded: {model_name}")
|
195 |
-
except Exception as e:
|
196 |
-
if model_name in loaded_models.keys(): del loaded_models[model_name]
|
197 |
-
print(f"Failed to load: {model_name}")
|
198 |
-
print(e)
|
199 |
-
return None
|
200 |
-
try:
|
201 |
-
model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
|
202 |
-
print(f"Assigned: {model_name}")
|
203 |
-
except Exception as e:
|
204 |
-
if model_name in model_info_dict.keys(): del model_info_dict[model_name]
|
205 |
-
print(f"Failed to assigned: {model_name}")
|
206 |
-
print(e)
|
207 |
-
return loaded_models[model_name]
|
208 |
-
|
209 |
-
|
210 |
-
def load_model_api(model_name: str):
|
211 |
-
global loaded_models
|
212 |
-
global model_info_dict
|
213 |
-
if model_name in loaded_models.keys(): return loaded_models[model_name]
|
214 |
-
try:
|
215 |
-
client = InferenceClient(timeout=5)
|
216 |
-
status = client.get_model_status(model_name, token=HF_TOKEN)
|
217 |
-
if status is None or status.framework != "diffusers" or status.state not in ["Loadable", "Loaded"]:
|
218 |
-
print(f"Failed to load by API: {model_name}")
|
219 |
-
return None
|
220 |
-
else:
|
221 |
-
loaded_models[model_name] = InferenceClient(model_name, token=HF_TOKEN, timeout=server_timeout)
|
222 |
-
print(f"Loaded by API: {model_name}")
|
223 |
-
except Exception as e:
|
224 |
-
if model_name in loaded_models.keys(): del loaded_models[model_name]
|
225 |
-
print(f"Failed to load by API: {model_name}")
|
226 |
-
print(e)
|
227 |
-
return None
|
228 |
-
try:
|
229 |
-
model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
|
230 |
-
print(f"Assigned by API: {model_name}")
|
231 |
-
except Exception as e:
|
232 |
-
if model_name in model_info_dict.keys(): del model_info_dict[model_name]
|
233 |
-
print(f"Failed to assigned by API: {model_name}")
|
234 |
-
print(e)
|
235 |
-
return loaded_models[model_name]
|
236 |
-
|
237 |
-
|
238 |
-
def load_models(models: list):
|
239 |
-
for model in models:
|
240 |
-
load_model(model)
|
241 |
-
|
242 |
-
|
243 |
-
positive_prefix = {
|
244 |
-
"Pony": to_list("score_9, score_8_up, score_7_up"),
|
245 |
-
"Pony Anime": to_list("source_anime, anime, score_9, score_8_up, score_7_up"),
|
246 |
-
}
|
247 |
-
positive_suffix = {
|
248 |
-
"Common": to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres"),
|
249 |
-
"Anime": to_list("anime artwork, anime style, studio anime, highly detailed"),
|
250 |
-
}
|
251 |
-
negative_prefix = {
|
252 |
-
"Pony": to_list("score_6, score_5, score_4"),
|
253 |
-
"Pony Anime": to_list("score_6, score_5, score_4, source_pony, source_furry, source_cartoon"),
|
254 |
-
"Pony Real": to_list("score_6, score_5, score_4, source_anime, source_pony, source_furry, source_cartoon"),
|
255 |
-
}
|
256 |
-
negative_suffix = {
|
257 |
-
"Common": to_list("lowres, (bad), bad hands, bad feet, text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"),
|
258 |
-
"Pony Anime": to_list("busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends"),
|
259 |
-
"Pony Real": to_list("ugly, airbrushed, simple background, cgi, cartoon, anime"),
|
260 |
-
}
|
261 |
-
positive_all = negative_all = []
|
262 |
-
for k, v in (positive_prefix | positive_suffix).items():
|
263 |
-
positive_all = positive_all + v + [s.replace("_", " ") for s in v]
|
264 |
-
positive_all = list_uniq(positive_all)
|
265 |
-
for k, v in (negative_prefix | negative_suffix).items():
|
266 |
-
negative_all = negative_all + v + [s.replace("_", " ") for s in v]
|
267 |
-
positive_all = list_uniq(positive_all)
|
268 |
-
|
269 |
-
|
270 |
-
def recom_prompt(prompt: str = "", neg_prompt: str = "", pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []):
|
271 |
-
def flatten(src):
|
272 |
-
return [item for row in src for item in row]
|
273 |
-
prompts = to_list(prompt)
|
274 |
-
neg_prompts = to_list(neg_prompt)
|
275 |
-
prompts = list_sub(prompts, positive_all)
|
276 |
-
neg_prompts = list_sub(neg_prompts, negative_all)
|
277 |
-
last_empty_p = [""] if not prompts and type != "None" else []
|
278 |
-
last_empty_np = [""] if not neg_prompts and type != "None" else []
|
279 |
-
prefix_ps = flatten([positive_prefix.get(s, []) for s in pos_pre])
|
280 |
-
suffix_ps = flatten([positive_suffix.get(s, []) for s in pos_suf])
|
281 |
-
prefix_nps = flatten([negative_prefix.get(s, []) for s in neg_pre])
|
282 |
-
suffix_nps = flatten([negative_suffix.get(s, []) for s in neg_suf])
|
283 |
-
prompt = ", ".join(list_uniq(prefix_ps + prompts + suffix_ps) + last_empty_p)
|
284 |
-
neg_prompt = ", ".join(list_uniq(prefix_nps + neg_prompts + suffix_nps) + last_empty_np)
|
285 |
-
return prompt, neg_prompt
|
286 |
-
|
287 |
-
|
288 |
-
recom_prompt_type = {
|
289 |
-
"None": ([], [], [], []),
|
290 |
-
"Auto": ([], [], [], []),
|
291 |
-
"Common": ([], ["Common"], [], ["Common"]),
|
292 |
-
"Animagine": ([], ["Common", "Anime"], [], ["Common"]),
|
293 |
-
"Pony": (["Pony"], ["Common"], ["Pony"], ["Common"]),
|
294 |
-
"Pony Anime": (["Pony", "Pony Anime"], ["Common", "Anime"], ["Pony", "Pony Anime"], ["Common", "Pony Anime"]),
|
295 |
-
"Pony Real": (["Pony"], ["Common"], ["Pony", "Pony Real"], ["Common", "Pony Real"]),
|
296 |
-
}
|
297 |
-
|
298 |
-
|
299 |
-
enable_auto_recom_prompt = False
|
300 |
-
def insert_recom_prompt(prompt: str = "", neg_prompt: str = "", type: str = "None"):
|
301 |
-
global enable_auto_recom_prompt
|
302 |
-
if type == "Auto": enable_auto_recom_prompt = True
|
303 |
-
else: enable_auto_recom_prompt = False
|
304 |
-
pos_pre, pos_suf, neg_pre, neg_suf = recom_prompt_type.get(type, ([], [], [], []))
|
305 |
-
return recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
306 |
-
|
307 |
-
|
308 |
-
def set_recom_prompt_preset(type: str = "None"):
|
309 |
-
pos_pre, pos_suf, neg_pre, neg_suf = recom_prompt_type.get(type, ([], [], [], []))
|
310 |
-
return pos_pre, pos_suf, neg_pre, neg_suf
|
311 |
-
|
312 |
-
|
313 |
-
def get_recom_prompt_type():
|
314 |
-
type = list(recom_prompt_type.keys())
|
315 |
-
type.remove("Auto")
|
316 |
-
return type
|
317 |
-
|
318 |
-
|
319 |
-
def get_positive_prefix():
|
320 |
-
return list(positive_prefix.keys())
|
321 |
-
|
322 |
-
|
323 |
-
def get_positive_suffix():
|
324 |
-
return list(positive_suffix.keys())
|
325 |
-
|
326 |
-
|
327 |
-
def get_negative_prefix():
|
328 |
-
return list(negative_prefix.keys())
|
329 |
-
|
330 |
-
|
331 |
-
def get_negative_suffix():
|
332 |
-
return list(negative_suffix.keys())
|
333 |
-
|
334 |
-
|
335 |
-
def get_tag_type(pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []):
|
336 |
-
tag_type = "danbooru"
|
337 |
-
words = pos_pre + pos_suf + neg_pre + neg_suf
|
338 |
-
for word in words:
|
339 |
-
if "Pony" in word:
|
340 |
-
tag_type = "e621"
|
341 |
-
break
|
342 |
-
return tag_type
|
343 |
-
|
344 |
-
|
345 |
-
def get_model_info_md(model_name: str):
|
346 |
-
if model_name in model_info_dict.keys(): return model_info_dict[model_name].get("md", "")
|
347 |
-
|
348 |
-
|
349 |
-
def change_model(model_name: str):
|
350 |
-
load_model_api(model_name)
|
351 |
-
return get_model_info_md(model_name)
|
352 |
-
|
353 |
-
|
354 |
-
def warm_model(model_name: str):
|
355 |
-
model = load_model_api(model_name)
|
356 |
-
if model:
|
357 |
-
try:
|
358 |
-
print(f"Warming model: {model_name}")
|
359 |
-
infer_body(model, " ")
|
360 |
-
except Exception as e:
|
361 |
-
print(e)
|
362 |
-
|
363 |
-
|
364 |
-
# https://huggingface.co/docs/api-inference/detailed_parameters
|
365 |
-
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
366 |
-
def infer_body(client: InferenceClient | gr.Interface | object, prompt: str, neg_prompt: str
|
367 |
-
height: int
|
368 |
-
|
369 |
-
|
370 |
-
kwargs =
|
371 |
-
if
|
372 |
-
if
|
373 |
-
if
|
374 |
-
if
|
375 |
-
|
376 |
-
try:
|
377 |
-
if isinstance(client, InferenceClient):
|
378 |
-
image = client.text_to_image(prompt=prompt, negative_prompt=neg_prompt, **kwargs, token=HF_TOKEN)
|
379 |
-
elif isinstance(client, gr.Interface):
|
380 |
-
image = client.fn(prompt=prompt, negative_prompt=neg_prompt, **kwargs, token=HF_TOKEN)
|
381 |
-
else: return None
|
382 |
-
if isinstance(image, tuple): return None
|
383 |
-
image
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import asyncio
|
3 |
+
from threading import RLock
|
4 |
+
from pathlib import Path
|
5 |
+
from huggingface_hub import InferenceClient
|
6 |
+
import os
|
7 |
+
|
8 |
+
|
9 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
|
10 |
+
server_timeout = 600
|
11 |
+
inference_timeout = 300
|
12 |
+
|
13 |
+
|
14 |
+
lock = RLock()
|
15 |
+
loaded_models = {}
|
16 |
+
model_info_dict = {}
|
17 |
+
|
18 |
+
|
19 |
+
def to_list(s):
|
20 |
+
return [x.strip() for x in s.split(",")]
|
21 |
+
|
22 |
+
|
23 |
+
def list_sub(a, b):
|
24 |
+
return [e for e in a if e not in b]
|
25 |
+
|
26 |
+
|
27 |
+
def list_uniq(l):
|
28 |
+
return sorted(set(l), key=l.index)
|
29 |
+
|
30 |
+
|
31 |
+
def is_repo_name(s):
|
32 |
+
import re
|
33 |
+
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
|
34 |
+
|
35 |
+
|
36 |
+
def get_status(model_name: str):
|
37 |
+
from huggingface_hub import InferenceClient
|
38 |
+
client = InferenceClient(token=HF_TOKEN, timeout=10)
|
39 |
+
return client.get_model_status(model_name)
|
40 |
+
|
41 |
+
|
42 |
+
def is_loadable(model_name: str, force_gpu: bool = False):
|
43 |
+
try:
|
44 |
+
status = get_status(model_name)
|
45 |
+
except Exception as e:
|
46 |
+
print(e)
|
47 |
+
print(f"Couldn't load {model_name}.")
|
48 |
+
return False
|
49 |
+
gpu_state = isinstance(status.compute_type, dict) and "gpu" in status.compute_type.keys()
|
50 |
+
if status is None or status.state not in ["Loadable", "Loaded"] or (force_gpu and not gpu_state):
|
51 |
+
print(f"Couldn't load {model_name}. Model state:'{status.state}', GPU:{gpu_state}")
|
52 |
+
return status is not None and status.state in ["Loadable", "Loaded"] and (not force_gpu or gpu_state)
|
53 |
+
|
54 |
+
|
55 |
+
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
|
56 |
+
from huggingface_hub import HfApi
|
57 |
+
api = HfApi(token=HF_TOKEN)
|
58 |
+
default_tags = ["diffusers"]
|
59 |
+
if not sort: sort = "last_modified"
|
60 |
+
limit = limit * 20 if check_status and force_gpu else limit * 5
|
61 |
+
models = []
|
62 |
+
try:
|
63 |
+
model_infos = api.list_models(author=author, #task="text-to-image",
|
64 |
+
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
|
65 |
+
except Exception as e:
|
66 |
+
print(f"Error: Failed to list models.")
|
67 |
+
print(e)
|
68 |
+
return models
|
69 |
+
for model in model_infos:
|
70 |
+
if not model.private and not model.gated or HF_TOKEN is not None:
|
71 |
+
loadable = is_loadable(model.id, force_gpu) if check_status else True
|
72 |
+
if not_tag and not_tag in model.tags or not loadable: continue
|
73 |
+
models.append(model.id)
|
74 |
+
if len(models) == limit: break
|
75 |
+
return models
|
76 |
+
|
77 |
+
|
78 |
+
def get_t2i_model_info_dict(repo_id: str):
|
79 |
+
from huggingface_hub import HfApi
|
80 |
+
api = HfApi(token=HF_TOKEN)
|
81 |
+
info = {"md": "None"}
|
82 |
+
try:
|
83 |
+
if not is_repo_name(repo_id) or not api.repo_exists(repo_id=repo_id): return info
|
84 |
+
model = api.model_info(repo_id=repo_id, token=HF_TOKEN)
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Error: Failed to get {repo_id}'s info.")
|
87 |
+
print(e)
|
88 |
+
return info
|
89 |
+
if model.private or model.gated and HF_TOKEN is None: return info
|
90 |
+
try:
|
91 |
+
tags = model.tags
|
92 |
+
except Exception as e:
|
93 |
+
print(e)
|
94 |
+
return info
|
95 |
+
if not 'diffusers' in model.tags: return info
|
96 |
+
if 'diffusers:FluxPipeline' in tags: info["ver"] = "FLUX.1"
|
97 |
+
elif 'diffusers:StableDiffusionXLPipeline' in tags: info["ver"] = "SDXL"
|
98 |
+
elif 'diffusers:StableDiffusionPipeline' in tags: info["ver"] = "SD1.5"
|
99 |
+
elif 'diffusers:StableDiffusion3Pipeline' in tags: info["ver"] = "SD3"
|
100 |
+
else: info["ver"] = "Other"
|
101 |
+
info["url"] = f"https://huggingface.co/{repo_id}/"
|
102 |
+
info["tags"] = model.card_data.tags if model.card_data and model.card_data.tags else []
|
103 |
+
info["downloads"] = model.downloads
|
104 |
+
info["likes"] = model.likes
|
105 |
+
info["last_modified"] = model.last_modified.strftime("lastmod: %Y-%m-%d")
|
106 |
+
un_tags = ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']
|
107 |
+
descs = [info["ver"]] + list_sub(info["tags"], un_tags) + [f'DLs: {info["downloads"]}'] + [f'❤: {info["likes"]}'] + [info["last_modified"]]
|
108 |
+
info["md"] = f'Model Info: {", ".join(descs)} [Model Repo]({info["url"]})'
|
109 |
+
return info
|
110 |
+
|
111 |
+
|
112 |
+
def rename_image(image_path: str | None, model_name: str, save_path: str | None = None):
|
113 |
+
import shutil
|
114 |
+
from datetime import datetime, timezone, timedelta
|
115 |
+
if image_path is None: return None
|
116 |
+
dt_now = datetime.now(timezone(timedelta(hours=9)))
|
117 |
+
filename = f"{model_name.split('/')[-1]}_{dt_now.strftime('%Y%m%d_%H%M%S')}.png"
|
118 |
+
try:
|
119 |
+
if Path(image_path).exists():
|
120 |
+
png_path = "image.png"
|
121 |
+
if str(Path(image_path).resolve()) != str(Path(png_path).resolve()): shutil.copy(image_path, png_path)
|
122 |
+
if save_path is not None:
|
123 |
+
new_path = str(Path(png_path).resolve().rename(Path(save_path).resolve()))
|
124 |
+
else:
|
125 |
+
new_path = str(Path(png_path).resolve().rename(Path(filename).resolve()))
|
126 |
+
return new_path
|
127 |
+
else:
|
128 |
+
return None
|
129 |
+
except Exception as e:
|
130 |
+
print(e)
|
131 |
+
return None
|
132 |
+
|
133 |
+
|
134 |
+
def save_gallery(image_path: str | None, images: list[tuple] | None):
|
135 |
+
if images is None: images = []
|
136 |
+
files = [i[0] for i in images]
|
137 |
+
if image_path is None: return images, files
|
138 |
+
files.insert(0, str(image_path))
|
139 |
+
images.insert(0, (str(image_path), Path(image_path).stem))
|
140 |
+
return images, files
|
141 |
+
|
142 |
+
|
143 |
+
# https://github.com/gradio-app/gradio/blob/main/gradio/external.py
|
144 |
+
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
145 |
+
from typing import Literal
|
146 |
+
def load_from_model(model_name: str, hf_token: str | Literal[False] | None = None):
|
147 |
+
import httpx
|
148 |
+
import huggingface_hub
|
149 |
+
from gradio.exceptions import ModelNotFoundError, TooManyRequestsError
|
150 |
+
model_url = f"https://huggingface.co/{model_name}"
|
151 |
+
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
|
152 |
+
print(f"Fetching model from: {model_url}")
|
153 |
+
|
154 |
+
headers = ({} if hf_token in [False, None] else {"Authorization": f"Bearer {hf_token}"})
|
155 |
+
response = httpx.request("GET", api_url, headers=headers)
|
156 |
+
if response.status_code != 200:
|
157 |
+
raise ModelNotFoundError(
|
158 |
+
f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter."
|
159 |
+
)
|
160 |
+
p = response.json().get("pipeline_tag")
|
161 |
+
if p != "text-to-image": raise ModelNotFoundError(f"This model isn't for text-to-image or unsupported: {model_name}.")
|
162 |
+
headers["X-Wait-For-Model"] = "true"
|
163 |
+
client = huggingface_hub.InferenceClient(model=model_name, headers=headers,
|
164 |
+
token=hf_token, timeout=server_timeout)
|
165 |
+
inputs = gr.components.Textbox(label="Input")
|
166 |
+
outputs = gr.components.Image(label="Output")
|
167 |
+
fn = client.text_to_image
|
168 |
+
|
169 |
+
def query_huggingface_inference_endpoints(*data, **kwargs):
|
170 |
+
try:
|
171 |
+
data = fn(*data, **kwargs) # type: ignore
|
172 |
+
except huggingface_hub.utils.HfHubHTTPError as e:
|
173 |
+
if "429" in str(e):
|
174 |
+
raise TooManyRequestsError() from e
|
175 |
+
except Exception as e:
|
176 |
+
raise Exception() from e
|
177 |
+
return data
|
178 |
+
|
179 |
+
interface_info = {
|
180 |
+
"fn": query_huggingface_inference_endpoints,
|
181 |
+
"inputs": inputs,
|
182 |
+
"outputs": outputs,
|
183 |
+
"title": model_name,
|
184 |
+
}
|
185 |
+
return gr.Interface(**interface_info)
|
186 |
+
|
187 |
+
|
188 |
+
def load_model(model_name: str):
|
189 |
+
global loaded_models
|
190 |
+
global model_info_dict
|
191 |
+
if model_name in loaded_models.keys(): return loaded_models[model_name]
|
192 |
+
try:
|
193 |
+
loaded_models[model_name] = load_from_model(model_name, hf_token=HF_TOKEN)
|
194 |
+
print(f"Loaded: {model_name}")
|
195 |
+
except Exception as e:
|
196 |
+
if model_name in loaded_models.keys(): del loaded_models[model_name]
|
197 |
+
print(f"Failed to load: {model_name}")
|
198 |
+
print(e)
|
199 |
+
return None
|
200 |
+
try:
|
201 |
+
model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
|
202 |
+
print(f"Assigned: {model_name}")
|
203 |
+
except Exception as e:
|
204 |
+
if model_name in model_info_dict.keys(): del model_info_dict[model_name]
|
205 |
+
print(f"Failed to assigned: {model_name}")
|
206 |
+
print(e)
|
207 |
+
return loaded_models[model_name]
|
208 |
+
|
209 |
+
|
210 |
+
def load_model_api(model_name: str):
|
211 |
+
global loaded_models
|
212 |
+
global model_info_dict
|
213 |
+
if model_name in loaded_models.keys(): return loaded_models[model_name]
|
214 |
+
try:
|
215 |
+
client = InferenceClient(timeout=5)
|
216 |
+
status = client.get_model_status(model_name, token=HF_TOKEN)
|
217 |
+
if status is None or status.framework != "diffusers" or status.state not in ["Loadable", "Loaded"]:
|
218 |
+
print(f"Failed to load by API: {model_name}")
|
219 |
+
return None
|
220 |
+
else:
|
221 |
+
loaded_models[model_name] = InferenceClient(model_name, token=HF_TOKEN, timeout=server_timeout)
|
222 |
+
print(f"Loaded by API: {model_name}")
|
223 |
+
except Exception as e:
|
224 |
+
if model_name in loaded_models.keys(): del loaded_models[model_name]
|
225 |
+
print(f"Failed to load by API: {model_name}")
|
226 |
+
print(e)
|
227 |
+
return None
|
228 |
+
try:
|
229 |
+
model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
|
230 |
+
print(f"Assigned by API: {model_name}")
|
231 |
+
except Exception as e:
|
232 |
+
if model_name in model_info_dict.keys(): del model_info_dict[model_name]
|
233 |
+
print(f"Failed to assigned by API: {model_name}")
|
234 |
+
print(e)
|
235 |
+
return loaded_models[model_name]
|
236 |
+
|
237 |
+
|
238 |
+
def load_models(models: list):
|
239 |
+
for model in models:
|
240 |
+
load_model(model)
|
241 |
+
|
242 |
+
|
243 |
+
positive_prefix = {
|
244 |
+
"Pony": to_list("score_9, score_8_up, score_7_up"),
|
245 |
+
"Pony Anime": to_list("source_anime, anime, score_9, score_8_up, score_7_up"),
|
246 |
+
}
|
247 |
+
positive_suffix = {
|
248 |
+
"Common": to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres"),
|
249 |
+
"Anime": to_list("anime artwork, anime style, studio anime, highly detailed"),
|
250 |
+
}
|
251 |
+
negative_prefix = {
|
252 |
+
"Pony": to_list("score_6, score_5, score_4"),
|
253 |
+
"Pony Anime": to_list("score_6, score_5, score_4, source_pony, source_furry, source_cartoon"),
|
254 |
+
"Pony Real": to_list("score_6, score_5, score_4, source_anime, source_pony, source_furry, source_cartoon"),
|
255 |
+
}
|
256 |
+
negative_suffix = {
|
257 |
+
"Common": to_list("lowres, (bad), bad hands, bad feet, text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"),
|
258 |
+
"Pony Anime": to_list("busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends"),
|
259 |
+
"Pony Real": to_list("ugly, airbrushed, simple background, cgi, cartoon, anime"),
|
260 |
+
}
|
261 |
+
positive_all = negative_all = []
|
262 |
+
for k, v in (positive_prefix | positive_suffix).items():
|
263 |
+
positive_all = positive_all + v + [s.replace("_", " ") for s in v]
|
264 |
+
positive_all = list_uniq(positive_all)
|
265 |
+
for k, v in (negative_prefix | negative_suffix).items():
|
266 |
+
negative_all = negative_all + v + [s.replace("_", " ") for s in v]
|
267 |
+
positive_all = list_uniq(positive_all)
|
268 |
+
|
269 |
+
|
270 |
+
def recom_prompt(prompt: str = "", neg_prompt: str = "", pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []):
|
271 |
+
def flatten(src):
|
272 |
+
return [item for row in src for item in row]
|
273 |
+
prompts = to_list(prompt)
|
274 |
+
neg_prompts = to_list(neg_prompt)
|
275 |
+
prompts = list_sub(prompts, positive_all)
|
276 |
+
neg_prompts = list_sub(neg_prompts, negative_all)
|
277 |
+
last_empty_p = [""] if not prompts and type != "None" else []
|
278 |
+
last_empty_np = [""] if not neg_prompts and type != "None" else []
|
279 |
+
prefix_ps = flatten([positive_prefix.get(s, []) for s in pos_pre])
|
280 |
+
suffix_ps = flatten([positive_suffix.get(s, []) for s in pos_suf])
|
281 |
+
prefix_nps = flatten([negative_prefix.get(s, []) for s in neg_pre])
|
282 |
+
suffix_nps = flatten([negative_suffix.get(s, []) for s in neg_suf])
|
283 |
+
prompt = ", ".join(list_uniq(prefix_ps + prompts + suffix_ps) + last_empty_p)
|
284 |
+
neg_prompt = ", ".join(list_uniq(prefix_nps + neg_prompts + suffix_nps) + last_empty_np)
|
285 |
+
return prompt, neg_prompt
|
286 |
+
|
287 |
+
|
288 |
+
recom_prompt_type = {
|
289 |
+
"None": ([], [], [], []),
|
290 |
+
"Auto": ([], [], [], []),
|
291 |
+
"Common": ([], ["Common"], [], ["Common"]),
|
292 |
+
"Animagine": ([], ["Common", "Anime"], [], ["Common"]),
|
293 |
+
"Pony": (["Pony"], ["Common"], ["Pony"], ["Common"]),
|
294 |
+
"Pony Anime": (["Pony", "Pony Anime"], ["Common", "Anime"], ["Pony", "Pony Anime"], ["Common", "Pony Anime"]),
|
295 |
+
"Pony Real": (["Pony"], ["Common"], ["Pony", "Pony Real"], ["Common", "Pony Real"]),
|
296 |
+
}
|
297 |
+
|
298 |
+
|
299 |
+
enable_auto_recom_prompt = False
|
300 |
+
def insert_recom_prompt(prompt: str = "", neg_prompt: str = "", type: str = "None"):
|
301 |
+
global enable_auto_recom_prompt
|
302 |
+
if type == "Auto": enable_auto_recom_prompt = True
|
303 |
+
else: enable_auto_recom_prompt = False
|
304 |
+
pos_pre, pos_suf, neg_pre, neg_suf = recom_prompt_type.get(type, ([], [], [], []))
|
305 |
+
return recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
306 |
+
|
307 |
+
|
308 |
+
def set_recom_prompt_preset(type: str = "None"):
|
309 |
+
pos_pre, pos_suf, neg_pre, neg_suf = recom_prompt_type.get(type, ([], [], [], []))
|
310 |
+
return pos_pre, pos_suf, neg_pre, neg_suf
|
311 |
+
|
312 |
+
|
313 |
+
def get_recom_prompt_type():
|
314 |
+
type = list(recom_prompt_type.keys())
|
315 |
+
type.remove("Auto")
|
316 |
+
return type
|
317 |
+
|
318 |
+
|
319 |
+
def get_positive_prefix():
|
320 |
+
return list(positive_prefix.keys())
|
321 |
+
|
322 |
+
|
323 |
+
def get_positive_suffix():
|
324 |
+
return list(positive_suffix.keys())
|
325 |
+
|
326 |
+
|
327 |
+
def get_negative_prefix():
|
328 |
+
return list(negative_prefix.keys())
|
329 |
+
|
330 |
+
|
331 |
+
def get_negative_suffix():
|
332 |
+
return list(negative_suffix.keys())
|
333 |
+
|
334 |
+
|
335 |
+
def get_tag_type(pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []):
|
336 |
+
tag_type = "danbooru"
|
337 |
+
words = pos_pre + pos_suf + neg_pre + neg_suf
|
338 |
+
for word in words:
|
339 |
+
if "Pony" in word:
|
340 |
+
tag_type = "e621"
|
341 |
+
break
|
342 |
+
return tag_type
|
343 |
+
|
344 |
+
|
345 |
+
def get_model_info_md(model_name: str):
|
346 |
+
if model_name in model_info_dict.keys(): return model_info_dict[model_name].get("md", "")
|
347 |
+
|
348 |
+
|
349 |
+
def change_model(model_name: str):
|
350 |
+
load_model_api(model_name)
|
351 |
+
return get_model_info_md(model_name)
|
352 |
+
|
353 |
+
|
354 |
+
def warm_model(model_name: str):
|
355 |
+
model = load_model_api(model_name)
|
356 |
+
if model:
|
357 |
+
try:
|
358 |
+
print(f"Warming model: {model_name}")
|
359 |
+
infer_body(model, " ")
|
360 |
+
except Exception as e:
|
361 |
+
print(e)
|
362 |
+
|
363 |
+
|
364 |
+
# https://huggingface.co/docs/api-inference/detailed_parameters
|
365 |
+
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
366 |
+
def infer_body(client: InferenceClient | gr.Interface | object, model_str: str, prompt: str, neg_prompt: str = "",
|
367 |
+
height: int = 0, width: int = 0, steps: int = 0, cfg: int = 0, seed: int = -1):
|
368 |
+
png_path = "image.png"
|
369 |
+
kwargs = {}
|
370 |
+
if height > 0: kwargs["height"] = height
|
371 |
+
if width > 0: kwargs["width"] = width
|
372 |
+
if steps > 0: kwargs["num_inference_steps"] = steps
|
373 |
+
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
|
374 |
+
if seed == -1: kwargs["seed"] = randomize_seed()
|
375 |
+
else: kwargs["seed"] = seed
|
376 |
+
try:
|
377 |
+
if isinstance(client, InferenceClient):
|
378 |
+
image = client.text_to_image(prompt=prompt, negative_prompt=neg_prompt, **kwargs, token=HF_TOKEN)
|
379 |
+
elif isinstance(client, gr.Interface):
|
380 |
+
image = client.fn(prompt=prompt, negative_prompt=neg_prompt, **kwargs, token=HF_TOKEN)
|
381 |
+
else: return None
|
382 |
+
if isinstance(image, tuple): return None
|
383 |
+
return save_image(image, png_path, model_str, prompt, neg_prompt, height, width, steps, cfg, seed)
|
384 |
+
except Exception as e:
|
385 |
+
print(e)
|
386 |
+
raise Exception() from e
|
387 |
+
|
388 |
+
|
389 |
+
async def infer(model_name: str, prompt: str, neg_prompt: str ="", height: int = 0, width: int = 0,
|
390 |
+
steps: int = 0, cfg: int = 0, seed: int = -1,
|
391 |
+
save_path: str | None = None, timeout: float = inference_timeout):
|
392 |
+
model = load_model(model_name)
|
393 |
+
if not model: return None
|
394 |
+
task = asyncio.create_task(asyncio.to_thread(infer_body, model, model_name, prompt, neg_prompt,
|
395 |
+
height, width, steps, cfg, seed))
|
396 |
+
await asyncio.sleep(0)
|
397 |
+
try:
|
398 |
+
result = await asyncio.wait_for(task, timeout=timeout)
|
399 |
+
except asyncio.TimeoutError as e:
|
400 |
+
print(e)
|
401 |
+
print(f"Task timed out: {model_name}")
|
402 |
+
if not task.done(): task.cancel()
|
403 |
+
result = None
|
404 |
+
raise Exception(f"Task timed out: {model_name}") from e
|
405 |
+
except Exception as e:
|
406 |
+
print(e)
|
407 |
+
if not task.done(): task.cancel()
|
408 |
+
result = None
|
409 |
+
raise Exception() from e
|
410 |
+
if task.done() and result is not None:
|
411 |
+
with lock:
|
412 |
+
image = rename_image(result, model_name, save_path)
|
413 |
+
return image
|
414 |
+
return None
|
415 |
+
|
416 |
+
|
417 |
+
# https://github.com/aio-libs/pytest-aiohttp/issues/8 # also AsyncInferenceClient is buggy.
|
418 |
+
def infer_fn(model_name: str, prompt: str, neg_prompt: str = "", height: int = 0, width: int = 0,
|
419 |
+
steps: int = 0, cfg: int = 0, seed: int = -1,
|
420 |
+
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
|
421 |
+
if model_name == 'NA':
|
422 |
+
return None
|
423 |
+
try:
|
424 |
+
loop = asyncio.get_running_loop()
|
425 |
+
except Exception:
|
426 |
+
loop = asyncio.new_event_loop()
|
427 |
+
try:
|
428 |
+
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
429 |
+
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
|
430 |
+
steps, cfg, seed, save_path, inference_timeout))
|
431 |
+
except (Exception, asyncio.CancelledError) as e:
|
432 |
+
print(e)
|
433 |
+
print(f"Task aborted: {model_name}, Error: {e}")
|
434 |
+
result = None
|
435 |
+
raise gr.Error(f"Task aborted: {model_name}, Error: {e}")
|
436 |
+
finally:
|
437 |
+
loop.close()
|
438 |
+
return result
|
439 |
+
|
440 |
+
|
441 |
+
def infer_rand_fn(model_name_dummy: str, prompt: str, neg_prompt: str = "", height: int = 0, width: int = 0,
|
442 |
+
steps: int = 0, cfg: int = 0, seed: int = -1,
|
443 |
+
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
|
444 |
+
import random
|
445 |
+
if model_name_dummy == 'NA':
|
446 |
+
return None
|
447 |
+
random.seed()
|
448 |
+
model_name = random.choice(list(loaded_models.keys()))
|
449 |
+
try:
|
450 |
+
loop = asyncio.get_running_loop()
|
451 |
+
except Exception:
|
452 |
+
loop = asyncio.new_event_loop()
|
453 |
+
try:
|
454 |
+
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
455 |
+
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
|
456 |
+
steps, cfg, seed, save_path, inference_timeout))
|
457 |
+
except (Exception, asyncio.CancelledError) as e:
|
458 |
+
print(e)
|
459 |
+
print(f"Task aborted: {model_name}, Error: {e}")
|
460 |
+
result = None
|
461 |
+
raise gr.Error(f"Task aborted: {model_name}, Error: {e}")
|
462 |
+
finally:
|
463 |
+
loop.close()
|
464 |
+
return result
|
465 |
+
|
466 |
+
|
467 |
+
def save_image(image, savefile, modelname, prompt, nprompt, height=0, width=0, steps=0, cfg=0, seed=-1):
|
468 |
+
from PIL import Image, PngImagePlugin
|
469 |
+
import json
|
470 |
+
try:
|
471 |
+
metadata = {"prompt": prompt, "negative_prompt": nprompt, "Model": {"Model": modelname.split("/")[-1]}}
|
472 |
+
if steps > 0: metadata["num_inference_steps"] = steps
|
473 |
+
if cfg > 0: metadata["guidance_scale"] = cfg
|
474 |
+
if seed != -1: metadata["seed"] = seed
|
475 |
+
if width > 0 and height > 0: metadata["resolution"] = f"{width} x {height}"
|
476 |
+
metadata_str = json.dumps(metadata)
|
477 |
+
info = PngImagePlugin.PngInfo()
|
478 |
+
info.add_text("metadata", metadata_str)
|
479 |
+
image.save(savefile, "PNG", pnginfo=info)
|
480 |
+
return str(Path(savefile).resolve())
|
481 |
+
except Exception as e:
|
482 |
+
print(f"Failed to save image file: {e}")
|
483 |
+
raise Exception(f"Failed to save image file:") from e
|
484 |
+
|
485 |
+
|
486 |
+
def randomize_seed():
|
487 |
+
from random import seed, randint
|
488 |
+
MAX_SEED = 2**32-1
|
489 |
+
seed()
|
490 |
+
rseed = randint(0, MAX_SEED)
|
491 |
+
return rseed
|
492 |
+
|
493 |
+
|
494 |
+
from translatepy import Translator
|
495 |
+
translator = Translator()
|
496 |
+
def translate_to_en(input: str):
|
497 |
+
try:
|
498 |
+
output = str(translator.translate(input, 'English'))
|
499 |
+
except Exception as e:
|
500 |
+
output = input
|
501 |
+
print(e)
|
502 |
+
return output
|
requirements.txt
CHANGED
@@ -2,11 +2,8 @@ huggingface_hub
|
|
2 |
torch==2.2.0
|
3 |
torchvision
|
4 |
accelerate
|
5 |
-
transformers
|
6 |
optimum[onnxruntime]
|
7 |
-
spaces
|
8 |
dartrs
|
9 |
-
|
10 |
-
httpcore
|
11 |
-
googletrans==4.0.0rc1
|
12 |
timm
|
|
|
2 |
torch==2.2.0
|
3 |
torchvision
|
4 |
accelerate
|
5 |
+
transformers==4.44.0
|
6 |
optimum[onnxruntime]
|
|
|
7 |
dartrs
|
8 |
+
translatepy
|
|
|
|
|
9 |
timm
|
tagger/tagger.py
CHANGED
@@ -2,10 +2,7 @@ import spaces
|
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
-
from transformers import
|
6 |
-
AutoImageProcessor,
|
7 |
-
AutoModelForImageClassification,
|
8 |
-
)
|
9 |
from pathlib import Path
|
10 |
|
11 |
|
@@ -190,18 +187,16 @@ def convert_danbooru_to_e621_prompt(input_prompt: str = "", prompt_type: str = "
|
|
190 |
return output_prompt
|
191 |
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
from googletrans import Translator
|
198 |
-
translator = Translator()
|
199 |
try:
|
200 |
-
|
201 |
-
return translated_prompt
|
202 |
except Exception as e:
|
|
|
203 |
print(e)
|
204 |
-
|
205 |
|
206 |
def is_japanese(s):
|
207 |
import unicodedata
|
@@ -223,18 +218,23 @@ def translate_prompt(prompt: str = ""):
|
|
223 |
return ", ".join(outputs)
|
224 |
|
225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
def translate_prompt_to_ja(prompt: str = ""):
|
227 |
-
def translate_to_japanese(
|
228 |
-
import httpcore
|
229 |
-
setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')
|
230 |
-
from googletrans import Translator
|
231 |
-
translator = Translator()
|
232 |
try:
|
233 |
-
|
234 |
-
return translated_prompt
|
235 |
except Exception as e:
|
|
|
236 |
print(e)
|
237 |
-
|
238 |
|
239 |
def is_japanese(s):
|
240 |
import unicodedata
|
|
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
|
|
|
|
|
|
6 |
from pathlib import Path
|
7 |
|
8 |
|
|
|
187 |
return output_prompt
|
188 |
|
189 |
|
190 |
+
from translatepy import Translator
|
191 |
+
translator = Translator()
|
192 |
+
def translate_prompt_old(prompt: str = ""):
|
193 |
+
def translate_to_english(input: str):
|
|
|
|
|
194 |
try:
|
195 |
+
output = str(translator.translate(input, 'English'))
|
|
|
196 |
except Exception as e:
|
197 |
+
output = input
|
198 |
print(e)
|
199 |
+
return output
|
200 |
|
201 |
def is_japanese(s):
|
202 |
import unicodedata
|
|
|
218 |
return ", ".join(outputs)
|
219 |
|
220 |
|
221 |
+
def translate_prompt(input: str):
|
222 |
+
try:
|
223 |
+
output = str(translator.translate(input, 'English'))
|
224 |
+
except Exception as e:
|
225 |
+
output = input
|
226 |
+
print(e)
|
227 |
+
return output
|
228 |
+
|
229 |
+
|
230 |
def translate_prompt_to_ja(prompt: str = ""):
|
231 |
+
def translate_to_japanese(input: str):
|
|
|
|
|
|
|
|
|
232 |
try:
|
233 |
+
output = str(translator.translate(input, 'Japanese'))
|
|
|
234 |
except Exception as e:
|
235 |
+
output = input
|
236 |
print(e)
|
237 |
+
return output
|
238 |
|
239 |
def is_japanese(s):
|
240 |
import unicodedata
|