Spaces:
Sleeping
Sleeping
File size: 7,720 Bytes
a22eb82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import os
import yaml
import numpy as np
import warnings
from skimage import img_as_ubyte
warnings.filterwarnings('ignore')
import imageio
import torch
from src.facerender.modules.keypoint_detector import HEEstimator, KPDetector
from src.facerender.modules.mapping import MappingNet
from src.facerender.modules.generator import OcclusionAwareGenerator, OcclusionAwareSPADEGenerator
from src.facerender.modules.make_animation import make_animation
from pydub import AudioSegment
from src.utils.face_enhancer import enhancer as face_enhancer
class AnimateFromCoeff():
def __init__(self, free_view_checkpoint, mapping_checkpoint,
config_path, device):
with open(config_path) as f:
config = yaml.safe_load(f)
generator = OcclusionAwareSPADEGenerator(**config['model_params']['generator_params'],
**config['model_params']['common_params'])
kp_extractor = KPDetector(**config['model_params']['kp_detector_params'],
**config['model_params']['common_params'])
mapping = MappingNet(**config['model_params']['mapping_params'])
generator.to(device)
kp_extractor.to(device)
mapping.to(device)
for param in generator.parameters():
param.requires_grad = False
for param in kp_extractor.parameters():
param.requires_grad = False
for param in mapping.parameters():
param.requires_grad = False
if free_view_checkpoint is not None:
self.load_cpk_facevid2vid(free_view_checkpoint, kp_detector=kp_extractor, generator=generator)
else:
raise AttributeError("Checkpoint should be specified for video head pose estimator.")
if mapping_checkpoint is not None:
self.load_cpk_mapping(mapping_checkpoint, mapping=mapping)
else:
raise AttributeError("Checkpoint should be specified for video head pose estimator.")
self.kp_extractor = kp_extractor
self.generator = generator
self.mapping = mapping
self.kp_extractor.eval()
self.generator.eval()
self.mapping.eval()
self.device = device
def load_cpk_facevid2vid(self, checkpoint_path, generator=None, discriminator=None,
kp_detector=None, he_estimator=None, optimizer_generator=None,
optimizer_discriminator=None, optimizer_kp_detector=None,
optimizer_he_estimator=None, device="cpu"):
checkpoint = torch.load(checkpoint_path, map_location=torch.device(device))
if generator is not None:
generator.load_state_dict(checkpoint['generator'])
if kp_detector is not None:
kp_detector.load_state_dict(checkpoint['kp_detector'])
if he_estimator is not None:
he_estimator.load_state_dict(checkpoint['he_estimator'])
if discriminator is not None:
try:
discriminator.load_state_dict(checkpoint['discriminator'])
except:
print ('No discriminator in the state-dict. Dicriminator will be randomly initialized')
if optimizer_generator is not None:
optimizer_generator.load_state_dict(checkpoint['optimizer_generator'])
if optimizer_discriminator is not None:
try:
optimizer_discriminator.load_state_dict(checkpoint['optimizer_discriminator'])
except RuntimeError as e:
print ('No discriminator optimizer in the state-dict. Optimizer will be not initialized')
if optimizer_kp_detector is not None:
optimizer_kp_detector.load_state_dict(checkpoint['optimizer_kp_detector'])
if optimizer_he_estimator is not None:
optimizer_he_estimator.load_state_dict(checkpoint['optimizer_he_estimator'])
return checkpoint['epoch']
def load_cpk_mapping(self, checkpoint_path, mapping=None, discriminator=None,
optimizer_mapping=None, optimizer_discriminator=None, device='cpu'):
checkpoint = torch.load(checkpoint_path, map_location=torch.device(device))
if mapping is not None:
mapping.load_state_dict(checkpoint['mapping'])
if discriminator is not None:
discriminator.load_state_dict(checkpoint['discriminator'])
if optimizer_mapping is not None:
optimizer_mapping.load_state_dict(checkpoint['optimizer_mapping'])
if optimizer_discriminator is not None:
optimizer_discriminator.load_state_dict(checkpoint['optimizer_discriminator'])
return checkpoint['epoch']
def generate(self, x, video_save_dir, enhancer=None):
source_image=x['source_image'].type(torch.FloatTensor)
source_semantics=x['source_semantics'].type(torch.FloatTensor)
target_semantics=x['target_semantics_list'].type(torch.FloatTensor)
yaw_c_seq = x['yaw_c_seq'].type(torch.FloatTensor)
pitch_c_seq = x['pitch_c_seq'].type(torch.FloatTensor)
roll_c_seq = x['roll_c_seq'].type(torch.FloatTensor)
source_image=source_image.to(self.device)
source_semantics=source_semantics.to(self.device)
target_semantics=target_semantics.to(self.device)
yaw_c_seq = x['yaw_c_seq'].to(self.device)
pitch_c_seq = x['pitch_c_seq'].to(self.device)
roll_c_seq = x['roll_c_seq'].to(self.device)
frame_num = x['frame_num']
predictions_video = make_animation(source_image, source_semantics, target_semantics,
self.generator, self.kp_extractor, self.mapping,
yaw_c_seq, pitch_c_seq, roll_c_seq, use_exp = True,)
predictions_video = predictions_video.reshape((-1,)+predictions_video.shape[2:])
predictions_video = predictions_video[:frame_num]
video = []
for idx in range(predictions_video.shape[0]):
image = predictions_video[idx]
image = np.transpose(image.data.cpu().numpy(), [1, 2, 0]).astype(np.float32)
video.append(image)
result = img_as_ubyte(video)
video_name = x['video_name'] + '.mp4'
path = os.path.join(video_save_dir, 'temp_'+video_name)
imageio.mimsave(path, result, fps=float(25))
if enhancer:
video_name_enhancer = x['video_name'] + '_enhanced.mp4'
av_path_enhancer = os.path.join(video_save_dir, video_name_enhancer)
enhanced_path = os.path.join(video_save_dir, 'temp_'+video_name_enhancer)
enhanced_images = face_enhancer(result, method=enhancer)
imageio.mimsave(enhanced_path, enhanced_images, fps=float(25))
av_path = os.path.join(video_save_dir, video_name)
audio_path = x['audio_path']
audio_name = os.path.splitext(os.path.split(audio_path)[-1])[0]
new_audio_path = os.path.join(video_save_dir, audio_name+'.wav')
start_time = 0
sound = AudioSegment.from_mp3(audio_path)
frames = frame_num
end_time = start_time + frames*1/25*1000
word1=sound.set_frame_rate(16000)
word = word1[start_time:end_time]
word.export(new_audio_path, format="wav")
cmd = r'ffmpeg -y -i "%s" -i "%s" -vcodec copy "%s"' % (path, new_audio_path, av_path)
os.system(cmd)
if enhancer:
cmd = r'ffmpeg -y -i "%s" -i "%s" -vcodec copy "%s"' % (enhanced_path, new_audio_path, av_path_enhancer)
os.system(cmd)
os.remove(enhanced_path)
os.remove(path)
os.remove(new_audio_path)
|