Spaces:
Running
Running
import torch | |
import os, sys, shutil | |
from src.utils.preprocess import CropAndExtract | |
from src.test_audio2coeff import Audio2Coeff | |
from src.facerender.animate import AnimateFromCoeff | |
from src.generate_batch import get_data | |
from src.generate_facerender_batch import get_facerender_data | |
import uuid | |
from pydub import AudioSegment | |
def mp3_to_wav(mp3_filename,wav_filename,frame_rate): | |
mp3_file = AudioSegment.from_file(file=mp3_filename) | |
mp3_file.set_frame_rate(frame_rate).export(wav_filename,format="wav") | |
from modules.text2speech import text2speech | |
class SadTalker(): | |
def __init__(self, checkpoint_path='checkpoints'): | |
if torch.cuda.is_available() : | |
device = "cuda" | |
else: | |
device = "cpu" | |
# current_code_path = sys.argv[0] | |
# modules_path = os.path.split(current_code_path)[0] | |
current_root_path = './' | |
os.environ['TORCH_HOME']=os.path.join(current_root_path, 'checkpoints') | |
path_of_lm_croper = os.path.join(current_root_path, 'checkpoints', 'shape_predictor_68_face_landmarks.dat') | |
path_of_net_recon_model = os.path.join(current_root_path, 'checkpoints', 'epoch_20.pth') | |
dir_of_BFM_fitting = os.path.join(current_root_path, 'checkpoints', 'BFM_Fitting') | |
wav2lip_checkpoint = os.path.join(current_root_path, 'checkpoints', 'wav2lip.pth') | |
audio2pose_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2pose_00140-model.pth') | |
audio2pose_yaml_path = os.path.join(current_root_path, 'config', 'auido2pose.yaml') | |
audio2exp_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2exp_00300-model.pth') | |
audio2exp_yaml_path = os.path.join(current_root_path, 'config', 'auido2exp.yaml') | |
free_view_checkpoint = os.path.join(current_root_path, 'checkpoints', 'facevid2vid_00189-model.pth.tar') | |
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00229-model.pth.tar') | |
facerender_yaml_path = os.path.join(current_root_path, 'config', 'facerender.yaml') | |
#init model | |
print(path_of_lm_croper) | |
self.preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device) | |
print(audio2pose_checkpoint) | |
self.audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path, | |
audio2exp_checkpoint, audio2exp_yaml_path, wav2lip_checkpoint, device) | |
print(free_view_checkpoint) | |
self.animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint, | |
facerender_yaml_path, device) | |
self.device = device | |
def test(self, source_image, driven_audio, still_mode, resize_mode, use_enhancer, result_dir='./'): | |
time_tag = str(uuid.uuid4()) # strftime("%Y_%m_%d_%H.%M.%S") | |
save_dir = os.path.join(result_dir, time_tag) | |
os.makedirs(save_dir, exist_ok=True) | |
input_dir = os.path.join(save_dir, 'input') | |
os.makedirs(input_dir, exist_ok=True) | |
print(source_image) | |
pic_path = os.path.join(input_dir, os.path.basename(source_image)) | |
shutil.move(source_image, input_dir) | |
if os.path.isfile(driven_audio): | |
audio_path = os.path.join(input_dir, os.path.basename(driven_audio)) | |
#### mp3 to wav | |
if '.mp3' in audio_path: | |
mp3_to_wav(driven_audio, audio_path.replace('.mp3', '.wav'), 16000) | |
audio_path = audio_path.replace('.mp3', '.wav') | |
else: | |
shutil.move(driven_audio, input_dir) | |
else: | |
text2speech | |
os.makedirs(save_dir, exist_ok=True) | |
pose_style = 0 | |
#crop image and extract 3dmm from image | |
first_frame_dir = os.path.join(save_dir, 'first_frame_dir') | |
os.makedirs(first_frame_dir, exist_ok=True) | |
first_coeff_path, crop_pic_path, original_size = self.preprocess_model.generate(pic_path, first_frame_dir, crop_or_resize= 'crop' if resize_mode else 'resize') | |
if first_coeff_path is None: | |
raise AttributeError("No face is detected") | |
#audio2ceoff | |
batch = get_data(first_coeff_path, audio_path, self.device) | |
coeff_path = self.audio_to_coeff.generate(batch, save_dir, pose_style) | |
#coeff2video | |
batch_size = 4 | |
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, batch_size, still_mode=still_mode) | |
self.animate_from_coeff.generate(data, save_dir, enhancer='gfpgan' if use_enhancer else None, original_size=original_size) | |
video_name = data['video_name'] | |
print(f'The generated video is named {video_name} in {save_dir}') | |
torch.cuda.empty_cache() | |
torch.cuda.synchronize() | |
import gc; gc.collect() | |
if use_enhancer: | |
return os.path.join(save_dir, video_name+'_enhanced.mp4'), os.path.join(save_dir, video_name+'_enhanced.mp4') | |
else: | |
return os.path.join(save_dir, video_name+'.mp4'), os.path.join(save_dir, video_name+'.mp4') | |