Spaces:
Running
Running
# coding: utf-8 | |
import os | |
import pickle | |
import matplotlib | |
import pandas as pd | |
matplotlib.use('Agg') | |
import matplotlib.pyplot as plt | |
import timeit | |
import sklearn | |
import argparse | |
import cv2 | |
import numpy as np | |
import torch | |
from skimage import transform as trans | |
from backbones import get_model | |
from sklearn.metrics import roc_curve, auc | |
from menpo.visualize.viewmatplotlib import sample_colours_from_colourmap | |
from prettytable import PrettyTable | |
from pathlib import Path | |
import sys | |
import warnings | |
sys.path.insert(0, "../") | |
warnings.filterwarnings("ignore") | |
parser = argparse.ArgumentParser(description='do ijb test') | |
# general | |
parser.add_argument('--model-prefix', default='', help='path to load model.') | |
parser.add_argument('--image-path', default='', type=str, help='') | |
parser.add_argument('--result-dir', default='.', type=str, help='') | |
parser.add_argument('--batch-size', default=128, type=int, help='') | |
parser.add_argument('--network', default='iresnet50', type=str, help='') | |
parser.add_argument('--job', default='insightface', type=str, help='job name') | |
parser.add_argument('--target', default='IJBC', type=str, help='target, set to IJBC or IJBB') | |
args = parser.parse_args() | |
target = args.target | |
model_path = args.model_prefix | |
image_path = args.image_path | |
result_dir = args.result_dir | |
gpu_id = None | |
use_norm_score = True # if Ture, TestMode(N1) | |
use_detector_score = True # if Ture, TestMode(D1) | |
use_flip_test = True # if Ture, TestMode(F1) | |
job = args.job | |
batch_size = args.batch_size | |
class Embedding(object): | |
def __init__(self, prefix, data_shape, batch_size=1): | |
image_size = (112, 112) | |
self.image_size = image_size | |
weight = torch.load(prefix) | |
resnet = get_model(args.network, dropout=0, fp16=False).cuda() | |
resnet.load_state_dict(weight) | |
model = torch.nn.DataParallel(resnet) | |
self.model = model | |
self.model.eval() | |
src = np.array([ | |
[30.2946, 51.6963], | |
[65.5318, 51.5014], | |
[48.0252, 71.7366], | |
[33.5493, 92.3655], | |
[62.7299, 92.2041]], dtype=np.float32) | |
src[:, 0] += 8.0 | |
self.src = src | |
self.batch_size = batch_size | |
self.data_shape = data_shape | |
def get(self, rimg, landmark): | |
assert landmark.shape[0] == 68 or landmark.shape[0] == 5 | |
assert landmark.shape[1] == 2 | |
if landmark.shape[0] == 68: | |
landmark5 = np.zeros((5, 2), dtype=np.float32) | |
landmark5[0] = (landmark[36] + landmark[39]) / 2 | |
landmark5[1] = (landmark[42] + landmark[45]) / 2 | |
landmark5[2] = landmark[30] | |
landmark5[3] = landmark[48] | |
landmark5[4] = landmark[54] | |
else: | |
landmark5 = landmark | |
tform = trans.SimilarityTransform() | |
tform.estimate(landmark5, self.src) | |
M = tform.params[0:2, :] | |
img = cv2.warpAffine(rimg, | |
M, (self.image_size[1], self.image_size[0]), | |
borderValue=0.0) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img_flip = np.fliplr(img) | |
img = np.transpose(img, (2, 0, 1)) # 3*112*112, RGB | |
img_flip = np.transpose(img_flip, (2, 0, 1)) | |
input_blob = np.zeros((2, 3, self.image_size[1], self.image_size[0]), dtype=np.uint8) | |
input_blob[0] = img | |
input_blob[1] = img_flip | |
return input_blob | |
def forward_db(self, batch_data): | |
imgs = torch.Tensor(batch_data).cuda() | |
imgs.div_(255).sub_(0.5).div_(0.5) | |
feat = self.model(imgs) | |
feat = feat.reshape([self.batch_size, 2 * feat.shape[1]]) | |
return feat.cpu().numpy() | |
# 将一个list尽量均分成n份,限制len(list)==n,份数大于原list内元素个数则分配空list[] | |
def divideIntoNstrand(listTemp, n): | |
twoList = [[] for i in range(n)] | |
for i, e in enumerate(listTemp): | |
twoList[i % n].append(e) | |
return twoList | |
def read_template_media_list(path): | |
# ijb_meta = np.loadtxt(path, dtype=str) | |
ijb_meta = pd.read_csv(path, sep=' ', header=None).values | |
templates = ijb_meta[:, 1].astype(np.int) | |
medias = ijb_meta[:, 2].astype(np.int) | |
return templates, medias | |
# In[ ]: | |
def read_template_pair_list(path): | |
# pairs = np.loadtxt(path, dtype=str) | |
pairs = pd.read_csv(path, sep=' ', header=None).values | |
# print(pairs.shape) | |
# print(pairs[:, 0].astype(np.int)) | |
t1 = pairs[:, 0].astype(np.int) | |
t2 = pairs[:, 1].astype(np.int) | |
label = pairs[:, 2].astype(np.int) | |
return t1, t2, label | |
# In[ ]: | |
def read_image_feature(path): | |
with open(path, 'rb') as fid: | |
img_feats = pickle.load(fid) | |
return img_feats | |
# In[ ]: | |
def get_image_feature(img_path, files_list, model_path, epoch, gpu_id): | |
batch_size = args.batch_size | |
data_shape = (3, 112, 112) | |
files = files_list | |
print('files:', len(files)) | |
rare_size = len(files) % batch_size | |
faceness_scores = [] | |
batch = 0 | |
img_feats = np.empty((len(files), 1024), dtype=np.float32) | |
batch_data = np.empty((2 * batch_size, 3, 112, 112)) | |
embedding = Embedding(model_path, data_shape, batch_size) | |
for img_index, each_line in enumerate(files[:len(files) - rare_size]): | |
name_lmk_score = each_line.strip().split(' ') | |
img_name = os.path.join(img_path, name_lmk_score[0]) | |
img = cv2.imread(img_name) | |
lmk = np.array([float(x) for x in name_lmk_score[1:-1]], | |
dtype=np.float32) | |
lmk = lmk.reshape((5, 2)) | |
input_blob = embedding.get(img, lmk) | |
batch_data[2 * (img_index - batch * batch_size)][:] = input_blob[0] | |
batch_data[2 * (img_index - batch * batch_size) + 1][:] = input_blob[1] | |
if (img_index + 1) % batch_size == 0: | |
print('batch', batch) | |
img_feats[batch * batch_size:batch * batch_size + | |
batch_size][:] = embedding.forward_db(batch_data) | |
batch += 1 | |
faceness_scores.append(name_lmk_score[-1]) | |
batch_data = np.empty((2 * rare_size, 3, 112, 112)) | |
embedding = Embedding(model_path, data_shape, rare_size) | |
for img_index, each_line in enumerate(files[len(files) - rare_size:]): | |
name_lmk_score = each_line.strip().split(' ') | |
img_name = os.path.join(img_path, name_lmk_score[0]) | |
img = cv2.imread(img_name) | |
lmk = np.array([float(x) for x in name_lmk_score[1:-1]], | |
dtype=np.float32) | |
lmk = lmk.reshape((5, 2)) | |
input_blob = embedding.get(img, lmk) | |
batch_data[2 * img_index][:] = input_blob[0] | |
batch_data[2 * img_index + 1][:] = input_blob[1] | |
if (img_index + 1) % rare_size == 0: | |
print('batch', batch) | |
img_feats[len(files) - | |
rare_size:][:] = embedding.forward_db(batch_data) | |
batch += 1 | |
faceness_scores.append(name_lmk_score[-1]) | |
faceness_scores = np.array(faceness_scores).astype(np.float32) | |
# img_feats = np.ones( (len(files), 1024), dtype=np.float32) * 0.01 | |
# faceness_scores = np.ones( (len(files), ), dtype=np.float32 ) | |
return img_feats, faceness_scores | |
# In[ ]: | |
def image2template_feature(img_feats=None, templates=None, medias=None): | |
# ========================================================== | |
# 1. face image feature l2 normalization. img_feats:[number_image x feats_dim] | |
# 2. compute media feature. | |
# 3. compute template feature. | |
# ========================================================== | |
unique_templates = np.unique(templates) | |
template_feats = np.zeros((len(unique_templates), img_feats.shape[1])) | |
for count_template, uqt in enumerate(unique_templates): | |
(ind_t,) = np.where(templates == uqt) | |
face_norm_feats = img_feats[ind_t] | |
face_medias = medias[ind_t] | |
unique_medias, unique_media_counts = np.unique(face_medias, | |
return_counts=True) | |
media_norm_feats = [] | |
for u, ct in zip(unique_medias, unique_media_counts): | |
(ind_m,) = np.where(face_medias == u) | |
if ct == 1: | |
media_norm_feats += [face_norm_feats[ind_m]] | |
else: # image features from the same video will be aggregated into one feature | |
media_norm_feats += [ | |
np.mean(face_norm_feats[ind_m], axis=0, keepdims=True) | |
] | |
media_norm_feats = np.array(media_norm_feats) | |
# media_norm_feats = media_norm_feats / np.sqrt(np.sum(media_norm_feats ** 2, -1, keepdims=True)) | |
template_feats[count_template] = np.sum(media_norm_feats, axis=0) | |
if count_template % 2000 == 0: | |
print('Finish Calculating {} template features.'.format( | |
count_template)) | |
# template_norm_feats = template_feats / np.sqrt(np.sum(template_feats ** 2, -1, keepdims=True)) | |
template_norm_feats = sklearn.preprocessing.normalize(template_feats) | |
# print(template_norm_feats.shape) | |
return template_norm_feats, unique_templates | |
# In[ ]: | |
def verification(template_norm_feats=None, | |
unique_templates=None, | |
p1=None, | |
p2=None): | |
# ========================================================== | |
# Compute set-to-set Similarity Score. | |
# ========================================================== | |
template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int) | |
for count_template, uqt in enumerate(unique_templates): | |
template2id[uqt] = count_template | |
score = np.zeros((len(p1),)) # save cosine distance between pairs | |
total_pairs = np.array(range(len(p1))) | |
batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation | |
sublists = [ | |
total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize) | |
] | |
total_sublists = len(sublists) | |
for c, s in enumerate(sublists): | |
feat1 = template_norm_feats[template2id[p1[s]]] | |
feat2 = template_norm_feats[template2id[p2[s]]] | |
similarity_score = np.sum(feat1 * feat2, -1) | |
score[s] = similarity_score.flatten() | |
if c % 10 == 0: | |
print('Finish {}/{} pairs.'.format(c, total_sublists)) | |
return score | |
# In[ ]: | |
def verification2(template_norm_feats=None, | |
unique_templates=None, | |
p1=None, | |
p2=None): | |
template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int) | |
for count_template, uqt in enumerate(unique_templates): | |
template2id[uqt] = count_template | |
score = np.zeros((len(p1),)) # save cosine distance between pairs | |
total_pairs = np.array(range(len(p1))) | |
batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation | |
sublists = [ | |
total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize) | |
] | |
total_sublists = len(sublists) | |
for c, s in enumerate(sublists): | |
feat1 = template_norm_feats[template2id[p1[s]]] | |
feat2 = template_norm_feats[template2id[p2[s]]] | |
similarity_score = np.sum(feat1 * feat2, -1) | |
score[s] = similarity_score.flatten() | |
if c % 10 == 0: | |
print('Finish {}/{} pairs.'.format(c, total_sublists)) | |
return score | |
def read_score(path): | |
with open(path, 'rb') as fid: | |
img_feats = pickle.load(fid) | |
return img_feats | |
# # Step1: Load Meta Data | |
# In[ ]: | |
assert target == 'IJBC' or target == 'IJBB' | |
# ============================================================= | |
# load image and template relationships for template feature embedding | |
# tid --> template id, mid --> media id | |
# format: | |
# image_name tid mid | |
# ============================================================= | |
start = timeit.default_timer() | |
templates, medias = read_template_media_list( | |
os.path.join('%s/meta' % image_path, | |
'%s_face_tid_mid.txt' % target.lower())) | |
stop = timeit.default_timer() | |
print('Time: %.2f s. ' % (stop - start)) | |
# In[ ]: | |
# ============================================================= | |
# load template pairs for template-to-template verification | |
# tid : template id, label : 1/0 | |
# format: | |
# tid_1 tid_2 label | |
# ============================================================= | |
start = timeit.default_timer() | |
p1, p2, label = read_template_pair_list( | |
os.path.join('%s/meta' % image_path, | |
'%s_template_pair_label.txt' % target.lower())) | |
stop = timeit.default_timer() | |
print('Time: %.2f s. ' % (stop - start)) | |
# # Step 2: Get Image Features | |
# In[ ]: | |
# ============================================================= | |
# load image features | |
# format: | |
# img_feats: [image_num x feats_dim] (227630, 512) | |
# ============================================================= | |
start = timeit.default_timer() | |
img_path = '%s/loose_crop' % image_path | |
img_list_path = '%s/meta/%s_name_5pts_score.txt' % (image_path, target.lower()) | |
img_list = open(img_list_path) | |
files = img_list.readlines() | |
# files_list = divideIntoNstrand(files, rank_size) | |
files_list = files | |
# img_feats | |
# for i in range(rank_size): | |
img_feats, faceness_scores = get_image_feature(img_path, files_list, | |
model_path, 0, gpu_id) | |
stop = timeit.default_timer() | |
print('Time: %.2f s. ' % (stop - start)) | |
print('Feature Shape: ({} , {}) .'.format(img_feats.shape[0], | |
img_feats.shape[1])) | |
# # Step3: Get Template Features | |
# In[ ]: | |
# ============================================================= | |
# compute template features from image features. | |
# ============================================================= | |
start = timeit.default_timer() | |
# ========================================================== | |
# Norm feature before aggregation into template feature? | |
# Feature norm from embedding network and faceness score are able to decrease weights for noise samples (not face). | |
# ========================================================== | |
# 1. FaceScore (Feature Norm) | |
# 2. FaceScore (Detector) | |
if use_flip_test: | |
# concat --- F1 | |
# img_input_feats = img_feats | |
# add --- F2 | |
img_input_feats = img_feats[:, 0:img_feats.shape[1] // | |
2] + img_feats[:, img_feats.shape[1] // 2:] | |
else: | |
img_input_feats = img_feats[:, 0:img_feats.shape[1] // 2] | |
if use_norm_score: | |
img_input_feats = img_input_feats | |
else: | |
# normalise features to remove norm information | |
img_input_feats = img_input_feats / np.sqrt( | |
np.sum(img_input_feats ** 2, -1, keepdims=True)) | |
if use_detector_score: | |
print(img_input_feats.shape, faceness_scores.shape) | |
img_input_feats = img_input_feats * faceness_scores[:, np.newaxis] | |
else: | |
img_input_feats = img_input_feats | |
template_norm_feats, unique_templates = image2template_feature( | |
img_input_feats, templates, medias) | |
stop = timeit.default_timer() | |
print('Time: %.2f s. ' % (stop - start)) | |
# # Step 4: Get Template Similarity Scores | |
# In[ ]: | |
# ============================================================= | |
# compute verification scores between template pairs. | |
# ============================================================= | |
start = timeit.default_timer() | |
score = verification(template_norm_feats, unique_templates, p1, p2) | |
stop = timeit.default_timer() | |
print('Time: %.2f s. ' % (stop - start)) | |
# In[ ]: | |
save_path = os.path.join(result_dir, args.job) | |
# save_path = result_dir + '/%s_result' % target | |
if not os.path.exists(save_path): | |
os.makedirs(save_path) | |
score_save_file = os.path.join(save_path, "%s.npy" % target.lower()) | |
np.save(score_save_file, score) | |
# # Step 5: Get ROC Curves and TPR@FPR Table | |
# In[ ]: | |
files = [score_save_file] | |
methods = [] | |
scores = [] | |
for file in files: | |
methods.append(Path(file).stem) | |
scores.append(np.load(file)) | |
methods = np.array(methods) | |
scores = dict(zip(methods, scores)) | |
colours = dict( | |
zip(methods, sample_colours_from_colourmap(methods.shape[0], 'Set2'))) | |
x_labels = [10 ** -6, 10 ** -5, 10 ** -4, 10 ** -3, 10 ** -2, 10 ** -1] | |
tpr_fpr_table = PrettyTable(['Methods'] + [str(x) for x in x_labels]) | |
fig = plt.figure() | |
for method in methods: | |
fpr, tpr, _ = roc_curve(label, scores[method]) | |
roc_auc = auc(fpr, tpr) | |
fpr = np.flipud(fpr) | |
tpr = np.flipud(tpr) # select largest tpr at same fpr | |
plt.plot(fpr, | |
tpr, | |
color=colours[method], | |
lw=1, | |
label=('[%s (AUC = %0.4f %%)]' % | |
(method.split('-')[-1], roc_auc * 100))) | |
tpr_fpr_row = [] | |
tpr_fpr_row.append("%s-%s" % (method, target)) | |
for fpr_iter in np.arange(len(x_labels)): | |
_, min_index = min( | |
list(zip(abs(fpr - x_labels[fpr_iter]), range(len(fpr))))) | |
tpr_fpr_row.append('%.2f' % (tpr[min_index] * 100)) | |
tpr_fpr_table.add_row(tpr_fpr_row) | |
plt.xlim([10 ** -6, 0.1]) | |
plt.ylim([0.3, 1.0]) | |
plt.grid(linestyle='--', linewidth=1) | |
plt.xticks(x_labels) | |
plt.yticks(np.linspace(0.3, 1.0, 8, endpoint=True)) | |
plt.xscale('log') | |
plt.xlabel('False Positive Rate') | |
plt.ylabel('True Positive Rate') | |
plt.title('ROC on IJB') | |
plt.legend(loc="lower right") | |
fig.savefig(os.path.join(save_path, '%s.pdf' % target.lower())) | |
print(tpr_fpr_table) | |