Spaces:
Running
Running
import argparse | |
import logging | |
import os | |
import torch | |
import torch.distributed as dist | |
import torch.nn.functional as F | |
import torch.utils.data.distributed | |
from torch.nn.utils import clip_grad_norm_ | |
import losses | |
from backbones import get_model | |
from dataset import MXFaceDataset, SyntheticDataset, DataLoaderX | |
from partial_fc import PartialFC | |
from utils.utils_amp import MaxClipGradScaler | |
from utils.utils_callbacks import CallBackVerification, CallBackLogging, CallBackModelCheckpoint | |
from utils.utils_config import get_config | |
from utils.utils_logging import AverageMeter, init_logging | |
def main(args): | |
cfg = get_config(args.config) | |
try: | |
world_size = int(os.environ['WORLD_SIZE']) | |
rank = int(os.environ['RANK']) | |
dist.init_process_group('nccl') | |
except KeyError: | |
world_size = 1 | |
rank = 0 | |
dist.init_process_group(backend='nccl', init_method="tcp://127.0.0.1:12584", rank=rank, world_size=world_size) | |
local_rank = args.local_rank | |
torch.cuda.set_device(local_rank) | |
os.makedirs(cfg.output, exist_ok=True) | |
init_logging(rank, cfg.output) | |
if cfg.rec == "synthetic": | |
train_set = SyntheticDataset(local_rank=local_rank) | |
else: | |
train_set = MXFaceDataset(root_dir=cfg.rec, local_rank=local_rank) | |
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set, shuffle=True) | |
train_loader = DataLoaderX( | |
local_rank=local_rank, dataset=train_set, batch_size=cfg.batch_size, | |
sampler=train_sampler, num_workers=2, pin_memory=True, drop_last=True) | |
backbone = get_model(cfg.network, dropout=0.0, fp16=cfg.fp16, num_features=cfg.embedding_size).to(local_rank) | |
if cfg.resume: | |
try: | |
backbone_pth = os.path.join(cfg.output, "backbone.pth") | |
backbone.load_state_dict(torch.load(backbone_pth, map_location=torch.device(local_rank))) | |
if rank == 0: | |
logging.info("backbone resume successfully!") | |
except (FileNotFoundError, KeyError, IndexError, RuntimeError): | |
if rank == 0: | |
logging.info("resume fail, backbone init successfully!") | |
backbone = torch.nn.parallel.DistributedDataParallel( | |
module=backbone, broadcast_buffers=False, device_ids=[local_rank]) | |
backbone.train() | |
margin_softmax = losses.get_loss(cfg.loss) | |
module_partial_fc = PartialFC( | |
rank=rank, local_rank=local_rank, world_size=world_size, resume=cfg.resume, | |
batch_size=cfg.batch_size, margin_softmax=margin_softmax, num_classes=cfg.num_classes, | |
sample_rate=cfg.sample_rate, embedding_size=cfg.embedding_size, prefix=cfg.output) | |
opt_backbone = torch.optim.SGD( | |
params=[{'params': backbone.parameters()}], | |
lr=cfg.lr / 512 * cfg.batch_size * world_size, | |
momentum=0.9, weight_decay=cfg.weight_decay) | |
opt_pfc = torch.optim.SGD( | |
params=[{'params': module_partial_fc.parameters()}], | |
lr=cfg.lr / 512 * cfg.batch_size * world_size, | |
momentum=0.9, weight_decay=cfg.weight_decay) | |
num_image = len(train_set) | |
total_batch_size = cfg.batch_size * world_size | |
cfg.warmup_step = num_image // total_batch_size * cfg.warmup_epoch | |
cfg.total_step = num_image // total_batch_size * cfg.num_epoch | |
def lr_step_func(current_step): | |
cfg.decay_step = [x * num_image // total_batch_size for x in cfg.decay_epoch] | |
if current_step < cfg.warmup_step: | |
return current_step / cfg.warmup_step | |
else: | |
return 0.1 ** len([m for m in cfg.decay_step if m <= current_step]) | |
scheduler_backbone = torch.optim.lr_scheduler.LambdaLR( | |
optimizer=opt_backbone, lr_lambda=lr_step_func) | |
scheduler_pfc = torch.optim.lr_scheduler.LambdaLR( | |
optimizer=opt_pfc, lr_lambda=lr_step_func) | |
for key, value in cfg.items(): | |
num_space = 25 - len(key) | |
logging.info(": " + key + " " * num_space + str(value)) | |
val_target = cfg.val_targets | |
callback_verification = CallBackVerification(2000, rank, val_target, cfg.rec) | |
callback_logging = CallBackLogging(50, rank, cfg.total_step, cfg.batch_size, world_size, None) | |
callback_checkpoint = CallBackModelCheckpoint(rank, cfg.output) | |
loss = AverageMeter() | |
start_epoch = 0 | |
global_step = 0 | |
grad_amp = MaxClipGradScaler(cfg.batch_size, 128 * cfg.batch_size, growth_interval=100) if cfg.fp16 else None | |
for epoch in range(start_epoch, cfg.num_epoch): | |
train_sampler.set_epoch(epoch) | |
for step, (img, label) in enumerate(train_loader): | |
global_step += 1 | |
features = F.normalize(backbone(img)) | |
x_grad, loss_v = module_partial_fc.forward_backward(label, features, opt_pfc) | |
if cfg.fp16: | |
features.backward(grad_amp.scale(x_grad)) | |
grad_amp.unscale_(opt_backbone) | |
clip_grad_norm_(backbone.parameters(), max_norm=5, norm_type=2) | |
grad_amp.step(opt_backbone) | |
grad_amp.update() | |
else: | |
features.backward(x_grad) | |
clip_grad_norm_(backbone.parameters(), max_norm=5, norm_type=2) | |
opt_backbone.step() | |
opt_pfc.step() | |
module_partial_fc.update() | |
opt_backbone.zero_grad() | |
opt_pfc.zero_grad() | |
loss.update(loss_v, 1) | |
callback_logging(global_step, loss, epoch, cfg.fp16, scheduler_backbone.get_last_lr()[0], grad_amp) | |
callback_verification(global_step, backbone) | |
scheduler_backbone.step() | |
scheduler_pfc.step() | |
callback_checkpoint(global_step, backbone, module_partial_fc) | |
dist.destroy_process_group() | |
if __name__ == "__main__": | |
torch.backends.cudnn.benchmark = True | |
parser = argparse.ArgumentParser(description='PyTorch ArcFace Training') | |
parser.add_argument('config', type=str, help='py config file') | |
parser.add_argument('--local_rank', type=int, default=0, help='local_rank') | |
main(parser.parse_args()) | |