Spaces:
Running
Running
import os | |
import numpy as np | |
from PIL import Image | |
from skimage import io, img_as_float32, transform | |
import torch | |
import scipy.io as scio | |
def get_facerender_data(coeff_path, pic_path, first_coeff_path, audio_path, | |
batch_size, input_yaw_list=None, input_pitch_list=None, input_roll_list=None, | |
expression_scale=1.0, still_mode = False, preprocess='crop'): | |
semantic_radius = 13 | |
video_name = os.path.splitext(os.path.split(coeff_path)[-1])[0] | |
txt_path = os.path.splitext(coeff_path)[0] | |
data={} | |
img1 = Image.open(pic_path) | |
source_image = np.array(img1) | |
source_image = img_as_float32(source_image) | |
source_image = transform.resize(source_image, (256, 256, 3)) | |
source_image = source_image.transpose((2, 0, 1)) | |
source_image_ts = torch.FloatTensor(source_image).unsqueeze(0) | |
source_image_ts = source_image_ts.repeat(batch_size, 1, 1, 1) | |
data['source_image'] = source_image_ts | |
source_semantics_dict = scio.loadmat(first_coeff_path) | |
if preprocess.lower() != 'full': | |
source_semantics = source_semantics_dict['coeff_3dmm'][:1,:70] #1 70 | |
else: | |
source_semantics = source_semantics_dict['coeff_3dmm'][:1,:73] #1 70 | |
source_semantics_new = transform_semantic_1(source_semantics, semantic_radius) | |
source_semantics_ts = torch.FloatTensor(source_semantics_new).unsqueeze(0) | |
source_semantics_ts = source_semantics_ts.repeat(batch_size, 1, 1) | |
data['source_semantics'] = source_semantics_ts | |
# target | |
generated_dict = scio.loadmat(coeff_path) | |
generated_3dmm = generated_dict['coeff_3dmm'] | |
generated_3dmm[:, :64] = generated_3dmm[:, :64] * expression_scale | |
if preprocess.lower() == 'full': | |
generated_3dmm = np.concatenate([generated_3dmm, np.repeat(source_semantics[:,70:], generated_3dmm.shape[0], axis=0)], axis=1) | |
if still_mode: | |
generated_3dmm[:, 64:] = np.repeat(source_semantics[:, 64:], generated_3dmm.shape[0], axis=0) | |
with open(txt_path+'.txt', 'w') as f: | |
for coeff in generated_3dmm: | |
for i in coeff: | |
f.write(str(i)[:7] + ' '+'\t') | |
f.write('\n') | |
target_semantics_list = [] | |
frame_num = generated_3dmm.shape[0] | |
data['frame_num'] = frame_num | |
for frame_idx in range(frame_num): | |
target_semantics = transform_semantic_target(generated_3dmm, frame_idx, semantic_radius) | |
target_semantics_list.append(target_semantics) | |
remainder = frame_num%batch_size | |
if remainder!=0: | |
for _ in range(batch_size-remainder): | |
target_semantics_list.append(target_semantics) | |
target_semantics_np = np.array(target_semantics_list) #frame_num 70 semantic_radius*2+1 | |
target_semantics_np = target_semantics_np.reshape(batch_size, -1, target_semantics_np.shape[-2], target_semantics_np.shape[-1]) | |
data['target_semantics_list'] = torch.FloatTensor(target_semantics_np) | |
data['video_name'] = video_name | |
data['audio_path'] = audio_path | |
if input_yaw_list is not None: | |
yaw_c_seq = gen_camera_pose(input_yaw_list, frame_num, batch_size) | |
data['yaw_c_seq'] = torch.FloatTensor(yaw_c_seq) | |
if input_pitch_list is not None: | |
pitch_c_seq = gen_camera_pose(input_pitch_list, frame_num, batch_size) | |
data['pitch_c_seq'] = torch.FloatTensor(pitch_c_seq) | |
if input_roll_list is not None: | |
roll_c_seq = gen_camera_pose(input_roll_list, frame_num, batch_size) | |
data['roll_c_seq'] = torch.FloatTensor(roll_c_seq) | |
return data | |
def transform_semantic_1(semantic, semantic_radius): | |
semantic_list = [semantic for i in range(0, semantic_radius*2+1)] | |
coeff_3dmm = np.concatenate(semantic_list, 0) | |
return coeff_3dmm.transpose(1,0) | |
def transform_semantic_target(coeff_3dmm, frame_index, semantic_radius): | |
num_frames = coeff_3dmm.shape[0] | |
seq = list(range(frame_index- semantic_radius, frame_index + semantic_radius+1)) | |
index = [ min(max(item, 0), num_frames-1) for item in seq ] | |
coeff_3dmm_g = coeff_3dmm[index, :] | |
return coeff_3dmm_g.transpose(1,0) | |
def gen_camera_pose(camera_degree_list, frame_num, batch_size): | |
new_degree_list = [] | |
if len(camera_degree_list) == 1: | |
for _ in range(frame_num): | |
new_degree_list.append(camera_degree_list[0]) | |
remainder = frame_num%batch_size | |
if remainder!=0: | |
for _ in range(batch_size-remainder): | |
new_degree_list.append(new_degree_list[-1]) | |
new_degree_np = np.array(new_degree_list).reshape(batch_size, -1) | |
return new_degree_np | |
degree_sum = 0. | |
for i, degree in enumerate(camera_degree_list[1:]): | |
degree_sum += abs(degree-camera_degree_list[i]) | |
degree_per_frame = degree_sum/(frame_num-1) | |
for i, degree in enumerate(camera_degree_list[1:]): | |
degree_last = camera_degree_list[i] | |
degree_step = degree_per_frame * abs(degree-degree_last)/(degree-degree_last) | |
new_degree_list = new_degree_list + list(np.arange(degree_last, degree, degree_step)) | |
if len(new_degree_list) > frame_num: | |
new_degree_list = new_degree_list[:frame_num] | |
elif len(new_degree_list) < frame_num: | |
for _ in range(frame_num-len(new_degree_list)): | |
new_degree_list.append(new_degree_list[-1]) | |
print(len(new_degree_list)) | |
print(frame_num) | |
remainder = frame_num%batch_size | |
if remainder!=0: | |
for _ in range(batch_size-remainder): | |
new_degree_list.append(new_degree_list[-1]) | |
new_degree_np = np.array(new_degree_list).reshape(batch_size, -1) | |
return new_degree_np | |