File size: 13,523 Bytes
3a5287f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import argparse
import logging
import math
import os
import random
import shutil
from contextlib import nullcontext
from pathlib import Path
from safetensors.torch import save_file

import accelerate
import datasets
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.state import AcceleratorState
from accelerate.utils import ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from packaging import version
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from transformers.utils import ContextManagers
from omegaconf import OmegaConf
from copy import deepcopy
import diffusers
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel, compute_dream_and_update_latents, compute_snr
from diffusers.utils import check_min_version, deprecate, is_wandb_available, make_image_grid
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import is_compiled_module
from einops import rearrange
from src.flux.sampling import denoise, get_noise, get_schedule, prepare, unpack
from src.flux.util import (configs, load_ae, load_clip,
                       load_flow_model2, load_t5)
from src.flux.modules.layers import DoubleStreamBlockLoraProcessor

from image_datasets.dataset import loader
if is_wandb_available():
    import wandb
logger = get_logger(__name__, log_level="INFO")

def get_models(name: str, device, offload: bool, is_schnell: bool):
    t5 = load_t5(device, max_length=256 if is_schnell else 512)
    clip = load_clip(device)
    clip.requires_grad_(False)
    model = load_flow_model2(name, device="cpu")
    vae = load_ae(name, device="cpu" if offload else device)
    return model, vae, t5, clip

def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--config",
        type=str,
        default=None,
        required=True,
        help="path to config",
    )
    args = parser.parse_args()


    return args.config
def main():

    args = OmegaConf.load(parse_args())
    is_schnell = args.model_name == "flux-schnell"
    logging_dir = os.path.join(args.output_dir, args.logging_dir)

    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        project_config=accelerator_project_config,
    )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()


    if accelerator.is_main_process:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

    dit, vae, t5, clip = get_models(name=args.model_name, device=accelerator.device, offload=False, is_schnell=is_schnell)
    lora_attn_procs = {}

    for name, attn_processor in dit.attn_processors.items(): 
        lora_attn_procs[name] = DoubleStreamBlockLoraProcessor(
              dim=3072, rank=args.rank
        ) if name.startswith("double_blocks") else attn_processor
    dit.set_attn_processor(lora_attn_procs)
    
    vae.requires_grad_(False)
    t5.requires_grad_(False)
    clip.requires_grad_(False)
    dit = dit.to(torch.float32)
    dit.train()
    optimizer_cls = torch.optim.AdamW
    for n, param in dit.named_parameters():
        if '_lora' not in n:
            param.requires_grad = False
        else:
            print(n)
    print(sum([p.numel() for p in dit.parameters() if p.requires_grad]) / 1000000, 'parameters')
    optimizer = optimizer_cls(
        [p for p in dit.parameters() if p.requires_grad],
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

    train_dataloader = loader(**args.data_config)
    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
    )
    global_step = 0
    first_epoch = 0

    dit, optimizer, _, lr_scheduler = accelerator.prepare(
        dit, optimizer, deepcopy(train_dataloader), lr_scheduler
    )

    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
        args.mixed_precision = accelerator.mixed_precision
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16
        args.mixed_precision = accelerator.mixed_precision


    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    if accelerator.is_main_process:
        accelerator.init_trackers(args.tracker_project_name, {"test": None})

    timesteps = list(torch.linspace(1, 0, 1000).numpy())
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
            initial_global_step = 0
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            initial_global_step = global_step
            first_epoch = global_step // num_update_steps_per_epoch

    else:
        initial_global_step = 0
    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        disable=not accelerator.is_local_main_process,
    )

    for epoch in range(first_epoch, args.num_train_epochs):
        train_loss = 0.0
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(dit):
                img, prompts = batch
                with torch.no_grad():
                    x_1 = vae.encode(img.to(accelerator.device).to(torch.float32))
                    inp = prepare(t5=t5, clip=clip, img=x_1, prompt=prompts)
                    x_1 = rearrange(x_1, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)

                bs = img.shape[0]
                t = torch.sigmoid(torch.randn((bs,), device=accelerator.device))

                x_0 = torch.randn_like(x_1).to(accelerator.device)
                x_t = (1 - t) * x_1 + t * x_0
                bsz = x_1.shape[0]
                guidance_vec = torch.full((x_t.shape[0],), 4, device=x_t.device, dtype=x_t.dtype)

                # Predict the noise residual and compute loss
                model_pred = dit(img=x_t.to(weight_dtype),
                                img_ids=inp['img_ids'].to(weight_dtype),
                                txt=inp['txt'].to(weight_dtype),
                                txt_ids=inp['txt_ids'].to(weight_dtype),
                                y=inp['vec'].to(weight_dtype),
                                timesteps=t.to(weight_dtype),
                                guidance=guidance_vec.to(weight_dtype),)

                loss = F.mse_loss(model_pred.float(), (x_0 - x_1).float(), reduction="mean")

                # Gather the losses across all processes for logging (if we use distributed training).
                avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
                train_loss += avg_loss.item() / args.gradient_accumulation_steps

                # Backpropagate
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(dit.parameters(), args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1
                accelerator.log({"train_loss": train_loss}, step=global_step)
                train_loss = 0.0

                if global_step % args.checkpointing_steps == 0:
                    if accelerator.is_main_process:
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

                    save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")

                    accelerator.save_state(save_path)
                    unwrapped_model_state = accelerator.unwrap_model(dit).state_dict()

                    # save checkpoint in safetensors format
                    lora_state_dict = {k:unwrapped_model_state[k] for k in unwrapped_model_state.keys() if '_lora' in k}
                    save_file(
                        lora_state_dict, 
                        os.path.join(save_path, "lora.safetensors")
                    )
                  
                    logger.info(f"Saved state to {save_path}")

            logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)

            if global_step >= args.max_train_steps:
                break

    accelerator.wait_for_everyone()
    accelerator.end_training()


if __name__ == "__main__":
    main()