John6666 commited on
Commit
c25cab5
·
verified ·
1 Parent(s): 4fadbdf

Upload 6 files

Browse files
Files changed (6) hide show
  1. README.md +6 -5
  2. app.py +57 -0
  3. civitai_to_hf.py +127 -0
  4. packages.txt +1 -0
  5. requirements.txt +2 -0
  6. utils.py +161 -0
README.md CHANGED
@@ -1,12 +1,13 @@
1
  ---
2
- title: Civitai To Hf
3
- emoji: 📈
4
- colorFrom: indigo
5
- colorTo: indigo
6
  sdk: gradio
7
- sdk_version: 4.44.1
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: CivitAI to HF Downloader Alpha
3
+ emoji: 🤗
4
+ colorFrom: yellow
5
+ colorTo: blue
6
  sdk: gradio
7
+ sdk_version: 4.44.0
8
  app_file: app.py
9
  pinned: false
10
+ license: mit
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from civitai_to_hf import search_civitai, download_civitai, select_civitai_item, CIVITAI_TYPE, CIVITAI_BASEMODEL, CIVITAI_SORT, CIVITAI_PERIOD
3
+
4
+ css = """
5
+ .title { text-align: center; !important; }
6
+ """
7
+
8
+ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css, delete_cache=(60, 3600)) as demo:
9
+ with gr.Column():
10
+ gr.Markdown("# Civitai to HF Downloader Alpha", elem_classes="title")
11
+ with gr.Accordion("Search Civitai", open=False):
12
+ with gr.Row():
13
+ search_civitai_type = gr.CheckboxGroup(label="Type", choices=CIVITAI_TYPE, value=[])
14
+ search_civitai_basemodel = gr.CheckboxGroup(label="Base model", choices=CIVITAI_BASEMODEL, value=[])
15
+ with gr.Row():
16
+ search_civitai_sort = gr.Radio(label="Sort", choices=CIVITAI_SORT, value=CIVITAI_SORT[0])
17
+ search_civitai_period = gr.Radio(label="Period", choices=CIVITAI_PERIOD, value=CIVITAI_PERIOD[0])
18
+ with gr.Row():
19
+ search_civitai_query = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1)
20
+ search_civitai_tag = gr.Textbox(label="Tag", lines=1)
21
+ search_civitai_submit = gr.Button("Search on Civitai")
22
+ with gr.Row():
23
+ search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
24
+ search_civitai_json = gr.JSON(value={}, visible=False)
25
+ search_civitai_desc = gr.Markdown(value="", visible=False)
26
+ dl_url = gr.Textbox(label="Download URL", placeholder="https://civitai.com/api/download/models/28907", value="", lines=1)
27
+ civitai_key = gr.Textbox(label="Your Civitai Key", value="", max_lines=1)
28
+ with gr.Row():
29
+ hf_token = gr.Textbox(label="Your HF write token", placeholder="hf_...", value="", max_lines=1)
30
+ gr.Markdown("Your token is available at [hf.co/settings/tokens](https://huggingface.co/settings/tokens).")
31
+ with gr.Row():
32
+ newrepo_id = gr.Textbox(label="Upload repo ID", placeholder="yourid/yourrepo", value="", max_lines=1)
33
+ newrepo_type = gr.Radio(label="Upload repo type", choices=["model", "dataset"], value="model")
34
+ is_private = gr.Checkbox(label="Create private repo", value=True)
35
+ uploaded_urls = gr.CheckboxGroup(visible=False, choices=[], value=None) # hidden
36
+ run_button = gr.Button(value="Download and Upload")
37
+ urls_md = gr.Markdown()
38
+ gr.DuplicateButton(value="Duplicate Space")
39
+
40
+ gr.on(
41
+ triggers=[run_button.click],
42
+ fn=download_civitai,
43
+ inputs=[dl_url, civitai_key, hf_token, uploaded_urls, newrepo_id, newrepo_type, is_private],
44
+ outputs=[uploaded_urls, urls_md],
45
+ )
46
+ gr.on(
47
+ triggers=[search_civitai_submit.click, search_civitai_query.submit, search_civitai_tag.submit],
48
+ fn=search_civitai,
49
+ inputs=[search_civitai_query, search_civitai_type, search_civitai_basemodel, search_civitai_sort, search_civitai_period, search_civitai_tag],
50
+ outputs=[search_civitai_result, search_civitai_desc, search_civitai_submit, search_civitai_query],
51
+ queue=True,
52
+ show_api=False,
53
+ )
54
+ search_civitai_result.change(select_civitai_item, [search_civitai_result], [dl_url, search_civitai_desc], queue=False, show_api=False)
55
+
56
+ demo.queue()
57
+ demo.launch()
civitai_to_hf.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import HfApi, hf_hub_url
3
+ import os
4
+ from pathlib import Path
5
+ import gc
6
+ import requests
7
+ from requests.adapters import HTTPAdapter
8
+ from urllib3.util import Retry
9
+ from utils import get_token, set_token, is_repo_exists, get_user_agent, get_download_file
10
+
11
+
12
+ def upload_safetensors_to_repo(filename, repo_id, repo_type, is_private, progress=gr.Progress(track_tqdm=True)):
13
+ output_filename = Path(filename).name
14
+ hf_token = get_token()
15
+ api = HfApi(token=hf_token)
16
+ try:
17
+ if not is_repo_exists(repo_id, repo_type): api.create_repo(repo_id=repo_id, repo_type=repo_type, token=hf_token, private=is_private)
18
+ progress(0, desc="Start uploading...")
19
+ api.upload_file(path_or_fileobj=filename, path_in_repo=output_filename, repo_type=repo_type, revision="main", token=hf_token, repo_id=repo_id)
20
+ progress(1, desc="Uploaded.")
21
+ url = hf_hub_url(repo_id=repo_id, repo_type=repo_type, filename=output_filename)
22
+ except Exception as e:
23
+ print(f"Error: Failed to upload to {repo_id}. {e}")
24
+ gr.Warning(f"Error: Failed to upload to {repo_id}. {e}")
25
+ return None
26
+ return url
27
+
28
+
29
+ def download_file(dl_url, civitai_key, progress=gr.Progress(track_tqdm=True)):
30
+ download_dir = "."
31
+ progress(0, desc="Start downloading...")
32
+ output_filename = get_download_file(download_dir, dl_url, civitai_key)
33
+ return output_filename
34
+
35
+
36
+ def download_civitai(dl_url, civitai_key, hf_token, urls,
37
+ newrepo_id, repo_type="model", is_private=True, progress=gr.Progress(track_tqdm=True)):
38
+ if hf_token: set_token(hf_token)
39
+ else: set_token(os.environ.get("HF_TOKEN"))
40
+ if not civitai_key: civitai_key = os.environ.get("CIVITAI_API_KEY")
41
+ if not hf_token or not civitai_key: raise gr.Error("HF write token and Civitai API key is required.")
42
+ file = download_file(dl_url, civitai_key)
43
+ if not urls: urls = []
44
+ url = upload_safetensors_to_repo(file, newrepo_id, repo_type, is_private)
45
+ progress(1, desc="Processing...")
46
+ if url: urls.append(url)
47
+ Path(file).unlink()
48
+ md = ""
49
+ for u in urls:
50
+ md += f"[Uploaded {str(u)}]({str(u)})<br>"
51
+ gc.collect()
52
+ return gr.update(value=urls, choices=urls), gr.update(value=md)
53
+
54
+
55
+ CIVITAI_TYPE = ["Checkpoint", "TextualInversion", "Hypernetwork", "AestheticGradient", "LORA", "Controlnet", "Poses"]
56
+ CIVITAI_BASEMODEL = ["Pony", "SD 1.5", "SDXL 1.0", "Flux.1 D", "Flux.1 S"]
57
+ CIVITAI_SORT = ["Highest Rated", "Most Downloaded", "Newest"]
58
+ CIVITAI_PERIOD = ["AllTime", "Year", "Month", "Week", "Day"]
59
+
60
+
61
+ def search_on_civitai(query: str, types: list[str], allow_model: list[str] = [], limit: int = 100,
62
+ sort: str = "Highest Rated", period: str = "AllTime", tag: str = ""):
63
+
64
+ user_agent = get_user_agent()
65
+ headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
66
+ base_url = 'https://civitai.com/api/v1/models'
67
+ params = {'sort': sort, 'period': period, 'limit': limit, 'nsfw': 'true'}
68
+ if len(types) != 0: params["types"] = types
69
+ if query: params["query"] = query
70
+ if tag: params["tag"] = tag
71
+ session = requests.Session()
72
+ retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
73
+ session.mount("https://", HTTPAdapter(max_retries=retries))
74
+ try:
75
+ r = session.get(base_url, params=params, headers=headers, stream=True, timeout=(3.0, 30))
76
+ except Exception as e:
77
+ print(e)
78
+ return None
79
+ else:
80
+ if not r.ok: return None
81
+ json = r.json()
82
+ if 'items' not in json: return None
83
+ items = []
84
+ for j in json['items']:
85
+ for model in j['modelVersions']:
86
+ item = {}
87
+ if len(allow_model) != 0 and model['baseModel'] not in set(allow_model): continue
88
+ item['name'] = j['name']
89
+ item['creator'] = j['creator']['username']
90
+ item['tags'] = j['tags']
91
+ item['model_name'] = model['name']
92
+ item['base_model'] = model['baseModel']
93
+ item['dl_url'] = model['downloadUrl']
94
+ item['md'] = f'<img src="{model["images"][0]["url"]}" alt="thumbnail" width="150" height="240"><br>[LoRA Model URL](https://civitai.com/models/{j["id"]})'
95
+ items.append(item)
96
+ return items
97
+
98
+
99
+ civitai_last_results = {}
100
+
101
+
102
+ def search_civitai(query, types, base_model=[], sort=CIVITAI_SORT[0], period=CIVITAI_PERIOD[0], tag=""):
103
+ global civitai_last_results
104
+ items = search_on_civitai(query, types, base_model, 100, sort, period, tag)
105
+ if not items: return gr.update(choices=[("", "")], value="", visible=False),\
106
+ gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
107
+ civitai_last_results = {}
108
+ choices = []
109
+ for item in items:
110
+ base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
111
+ name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
112
+ value = item['dl_url']
113
+ choices.append((name, value))
114
+ civitai_last_results[value] = item
115
+ if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
116
+ gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
117
+ result = civitai_last_results.get(choices[0][1], "None")
118
+ md = result['md'] if result else ""
119
+ return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
120
+ gr.update(visible=True), gr.update(visible=True)
121
+
122
+
123
+ def select_civitai_item(search_result):
124
+ if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
125
+ result = civitai_last_results.get(search_result, "None")
126
+ md = result['md'] if result else ""
127
+ return gr.update(value=search_result), gr.update(value=md, visible=True)
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ git-lfs aria2
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ huggingface-hub
2
+ gdown
utils.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import HfApi, HfFolder, hf_hub_download
3
+ import os
4
+ from pathlib import Path
5
+ import shutil
6
+ import gc
7
+ import re
8
+ import urllib.parse
9
+
10
+
11
+ def get_token():
12
+ try:
13
+ token = HfFolder.get_token()
14
+ except Exception:
15
+ token = ""
16
+ return token
17
+
18
+
19
+ def set_token(token):
20
+ try:
21
+ HfFolder.save_token(token)
22
+ except Exception:
23
+ print(f"Error: Failed to save token.")
24
+
25
+
26
+ def get_user_agent():
27
+ return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'
28
+
29
+
30
+ def is_repo_exists(repo_id: str, repo_type: str="model"):
31
+ hf_token = get_token()
32
+ api = HfApi(token=hf_token)
33
+ try:
34
+ if api.repo_exists(repo_id=repo_id, repo_type=repo_type, token=hf_token): return True
35
+ else: return False
36
+ except Exception as e:
37
+ print(f"Error: Failed to connect {repo_id} ({repo_type}). {e}")
38
+ return True # for safe
39
+
40
+
41
+ MODEL_TYPE_CLASS = {
42
+ "diffusers:StableDiffusionPipeline": "SD 1.5",
43
+ "diffusers:StableDiffusionXLPipeline": "SDXL",
44
+ "diffusers:FluxPipeline": "FLUX",
45
+ }
46
+
47
+
48
+ def get_model_type(repo_id: str):
49
+ hf_token = get_token()
50
+ api = HfApi(token=hf_token)
51
+ lora_filename = "pytorch_lora_weights.safetensors"
52
+ diffusers_filename = "model_index.json"
53
+ default = "SDXL"
54
+ try:
55
+ if api.file_exists(repo_id=repo_id, filename=lora_filename, token=hf_token): return "LoRA"
56
+ if not api.file_exists(repo_id=repo_id, filename=diffusers_filename, token=hf_token): return "None"
57
+ model = api.model_info(repo_id=repo_id, token=hf_token)
58
+ tags = model.tags
59
+ for tag in tags:
60
+ if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
61
+ except Exception:
62
+ return default
63
+ return default
64
+
65
+
66
+ def list_sub(a, b):
67
+ return [e for e in a if e not in b]
68
+
69
+
70
+ def is_repo_name(s):
71
+ return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
72
+
73
+
74
+ def split_hf_url(url: str):
75
+ try:
76
+ s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.safetensors)(?:\?download=true)?$', url)[0])
77
+ if len(s) < 4: return "", "", "", ""
78
+ repo_id = s[1]
79
+ repo_type = "dataset" if s[0] == "datasets" else "model"
80
+ subfolder = urllib.parse.unquote(s[2]) if s[2] else None
81
+ filename = urllib.parse.unquote(s[3])
82
+ return repo_id, filename, subfolder, repo_type
83
+ except Exception as e:
84
+ print(e)
85
+
86
+
87
+ def download_hf_file(directory, url, progress=gr.Progress(track_tqdm=True)):
88
+ hf_token = get_token()
89
+ repo_id, filename, subfolder, repo_type = split_hf_url(url)
90
+ try:
91
+ if subfolder is not None: hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
92
+ else: hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token)
93
+ except Exception as e:
94
+ print(f"Failed to download: {e}")
95
+
96
+
97
+ def download_thing(directory, url, civitai_api_key="", progress=gr.Progress(track_tqdm=True)): # requires aria2, gdown
98
+ hf_token = get_token()
99
+ url = url.strip()
100
+ if "drive.google.com" in url:
101
+ original_dir = os.getcwd()
102
+ os.chdir(directory)
103
+ os.system(f"gdown --fuzzy {url}")
104
+ os.chdir(original_dir)
105
+ elif "huggingface.co" in url:
106
+ url = url.replace("?download=true", "")
107
+ if "/blob/" in url:
108
+ url = url.replace("/blob/", "/resolve/")
109
+ #user_header = f'"Authorization: Bearer {hf_token}"'
110
+ if hf_token:
111
+ download_hf_file(directory, url)
112
+ #os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
113
+ else:
114
+ os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
115
+ elif "civitai.com" in url:
116
+ if "?" in url:
117
+ url = url.split("?")[0]
118
+ if civitai_api_key:
119
+ url = url + f"?token={civitai_api_key}"
120
+ os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
121
+ else:
122
+ print("You need an API key to download Civitai models.")
123
+ else:
124
+ os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
125
+
126
+
127
+ def get_local_model_list(dir_path):
128
+ model_list = []
129
+ valid_extensions = ('.safetensors')
130
+ for file in Path(dir_path).glob("**/*.*"):
131
+ if file.is_file() and file.suffix in valid_extensions:
132
+ file_path = str(file)
133
+ model_list.append(file_path)
134
+ return model_list
135
+
136
+
137
+ def get_download_file(temp_dir, url, civitai_key, progress=gr.Progress(track_tqdm=True)):
138
+ if not "http" in url and is_repo_name(url) and not Path(url).exists():
139
+ print(f"Use HF Repo: {url}")
140
+ new_file = url
141
+ elif not "http" in url and Path(url).exists():
142
+ print(f"Use local file: {url}")
143
+ new_file = url
144
+ elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
145
+ print(f"File to download alreday exists: {url}")
146
+ new_file = f"{temp_dir}/{url.split('/')[-1]}"
147
+ else:
148
+ print(f"Start downloading: {url}")
149
+ before = get_local_model_list(temp_dir)
150
+ try:
151
+ download_thing(temp_dir, url.strip(), civitai_key)
152
+ except Exception:
153
+ print(f"Download failed: {url}")
154
+ return ""
155
+ after = get_local_model_list(temp_dir)
156
+ new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
157
+ if not new_file:
158
+ print(f"Download failed: {url}")
159
+ return ""
160
+ print(f"Download completed: {url}")
161
+ return new_file