File size: 6,025 Bytes
c983a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import gradio as gr
from huggingface_hub import HfApi, HfFolder, hf_hub_download
import os
from pathlib import Path
import shutil
import gc
import re
import urllib.parse


def get_token():
    try:
        token = HfFolder.get_token()
    except Exception:
        token = ""
    return token


def set_token(token):
    try:
        HfFolder.save_token(token)
    except Exception:
        print(f"Error: Failed to save token.")


def get_user_agent():
    return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'


def is_repo_exists(repo_id: str, repo_type: str="model"):
    hf_token = get_token()
    api = HfApi(token=hf_token)
    try:
        if api.repo_exists(repo_id=repo_id, repo_type=repo_type, token=hf_token): return True
        else: return False
    except Exception as e:
        print(f"Error: Failed to connect {repo_id} ({repo_type}). {e}")
        return True # for safe


MODEL_TYPE_CLASS = {
    "diffusers:StableDiffusionPipeline": "SD 1.5",
    "diffusers:StableDiffusionXLPipeline": "SDXL",
    "diffusers:FluxPipeline": "FLUX",
}


def get_model_type(repo_id: str):
    hf_token = get_token()
    api = HfApi(token=hf_token)
    lora_filename = "pytorch_lora_weights.safetensors"
    diffusers_filename = "model_index.json"
    default = "SDXL"
    try:
        if api.file_exists(repo_id=repo_id, filename=lora_filename, token=hf_token): return "LoRA"
        if not api.file_exists(repo_id=repo_id, filename=diffusers_filename, token=hf_token): return "None"
        model = api.model_info(repo_id=repo_id, token=hf_token)
        tags = model.tags
        for tag in tags:
            if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
    except Exception:
        return default
    return default


def list_sub(a, b):
    return [e for e in a if e not in b]


def is_repo_name(s):
    return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)


def split_hf_url(url: str):
    try:
        s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.safetensors)(?:\?download=true)?$', url)[0])
        if len(s) < 4: return "", "", "", ""
        repo_id = s[1]
        repo_type = "dataset" if s[0] == "datasets" else "model"
        subfolder = urllib.parse.unquote(s[2]) if s[2] else None
        filename = urllib.parse.unquote(s[3])
        return repo_id, filename, subfolder, repo_type
    except Exception as e:
        print(e)


def download_hf_file(directory, url, progress=gr.Progress(track_tqdm=True)):
    hf_token = get_token()
    repo_id, filename, subfolder, repo_type = split_hf_url(url)
    try:
        if subfolder is not None: hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
        else: hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token)
    except Exception as e:
        print(f"Failed to download: {e}")


def download_thing(directory, url, civitai_api_key="", progress=gr.Progress(track_tqdm=True)): # requires aria2, gdown
    hf_token = get_token()
    url = url.strip()
    if "drive.google.com" in url:
        original_dir = os.getcwd()
        os.chdir(directory)
        os.system(f"gdown --fuzzy {url}")
        os.chdir(original_dir)
    elif "huggingface.co" in url:
        url = url.replace("?download=true", "")
        if "/blob/" in url:
            url = url.replace("/blob/", "/resolve/")
        #user_header = f'"Authorization: Bearer {hf_token}"'
        if hf_token:
            download_hf_file(directory, url)
            #os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory}  -o {url.split('/')[-1]}")
        else:
            os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory}  -o {url.split('/')[-1]}")
    elif "civitai.com" in url:
        if "?" in url:
            url = url.split("?")[0]
        if civitai_api_key:
            url = url + f"?token={civitai_api_key}"
            os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
        else:
            print("You need an API key to download Civitai models.")
    else:
        os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")


def get_local_model_list(dir_path):
    model_list = []
    valid_extensions = ('.safetensors')
    for file in Path(dir_path).glob("**/*.*"):
        if file.is_file() and file.suffix in valid_extensions:
            file_path = str(file)
            model_list.append(file_path)
    return model_list


def get_download_file(temp_dir, url, civitai_key, progress=gr.Progress(track_tqdm=True)):
    if not "http" in url and is_repo_name(url) and not Path(url).exists():
        print(f"Use HF Repo: {url}")
        new_file = url
    elif not "http" in url and Path(url).exists():
        print(f"Use local file: {url}")
        new_file = url
    elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
        print(f"File to download alreday exists: {url}")
        new_file = f"{temp_dir}/{url.split('/')[-1]}"
    else:
        print(f"Start downloading: {url}")
        before = get_local_model_list(temp_dir)
        try:
            download_thing(temp_dir, url.strip(), civitai_key)
        except Exception:
            print(f"Download failed: {url}")
            return ""
        after = get_local_model_list(temp_dir)
        new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
    if not new_file:
        print(f"Download failed: {url}")
        return ""
    print(f"Download completed: {url}")
    return new_file