Upload 2 files
Browse files
app.py
CHANGED
@@ -44,7 +44,7 @@ def change_base_model(repo_id: str, cn_on: bool, progress=gr.Progress(track_tqdm
|
|
44 |
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=torch.bfloat16)
|
45 |
controlnet = FluxMultiControlNetModel([controlnet_union])
|
46 |
pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
47 |
-
pipe.enable_model_cpu_offload()
|
48 |
last_model = repo_id
|
49 |
last_cn_on = cn_on
|
50 |
progress(1, desc=f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
|
@@ -54,7 +54,7 @@ def change_base_model(repo_id: str, cn_on: bool, progress=gr.Progress(track_tqdm
|
|
54 |
print(f"Loading model: {repo_id}")
|
55 |
clear_cache()
|
56 |
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
|
57 |
-
pipe.enable_model_cpu_offload()
|
58 |
last_model = repo_id
|
59 |
last_cn_on = cn_on
|
60 |
progress(1, desc=f"Model loaded: {repo_id}")
|
@@ -321,7 +321,7 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as app:
|
|
321 |
custom_lora_info = gr.HTML(visible=False)
|
322 |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
323 |
with gr.Column(scale=4):
|
324 |
-
result = gr.Image(label="Generated Image")
|
325 |
|
326 |
with gr.Row():
|
327 |
with gr.Accordion("Advanced Settings", open=False):
|
@@ -394,7 +394,7 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as app:
|
|
394 |
cn_scale[i] = gr.Slider(label=f"ControlNet {int(i+1)} Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.75)
|
395 |
cn_res[i] = gr.Slider(label=f"ControlNet {int(i+1)} Preprocess resolution", minimum=128, maximum=512, value=384, step=1)
|
396 |
cn_num[i] = gr.Number(i, visible=False)
|
397 |
-
cn_image[i] = gr.Image(type="pil", label="Control Image", height=256)
|
398 |
|
399 |
gallery.select(
|
400 |
update_selection,
|
|
|
44 |
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=torch.bfloat16)
|
45 |
controlnet = FluxMultiControlNetModel([controlnet_union])
|
46 |
pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
47 |
+
#pipe.enable_model_cpu_offload()
|
48 |
last_model = repo_id
|
49 |
last_cn_on = cn_on
|
50 |
progress(1, desc=f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
|
|
|
54 |
print(f"Loading model: {repo_id}")
|
55 |
clear_cache()
|
56 |
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
|
57 |
+
#pipe.enable_model_cpu_offload()
|
58 |
last_model = repo_id
|
59 |
last_cn_on = cn_on
|
60 |
progress(1, desc=f"Model loaded: {repo_id}")
|
|
|
321 |
custom_lora_info = gr.HTML(visible=False)
|
322 |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
323 |
with gr.Column(scale=4):
|
324 |
+
result = gr.Image(label="Generated Image", format="png", show_share_button=False)
|
325 |
|
326 |
with gr.Row():
|
327 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
394 |
cn_scale[i] = gr.Slider(label=f"ControlNet {int(i+1)} Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.75)
|
395 |
cn_res[i] = gr.Slider(label=f"ControlNet {int(i+1)} Preprocess resolution", minimum=128, maximum=512, value=384, step=1)
|
396 |
cn_num[i] = gr.Number(i, visible=False)
|
397 |
+
cn_image[i] = gr.Image(type="pil", label="Control Image", height=256, show_share_button=False)
|
398 |
|
399 |
gallery.select(
|
400 |
update_selection,
|
mod.py
CHANGED
@@ -148,7 +148,7 @@ def preprocess_image(image: Image.Image, control_mode: str, height: int, width:
|
|
148 |
preprocess_resolution: int, progress=gr.Progress(track_tqdm=True)):
|
149 |
if control_mode == "None": return image
|
150 |
image_resolution = max(width, height)
|
151 |
-
image_before = resize_image(expand2square(image), image_resolution, image_resolution, False)
|
152 |
# generated control_
|
153 |
print("start to generate control image")
|
154 |
preprocessor = Preprocessor()
|
|
|
148 |
preprocess_resolution: int, progress=gr.Progress(track_tqdm=True)):
|
149 |
if control_mode == "None": return image
|
150 |
image_resolution = max(width, height)
|
151 |
+
image_before = resize_image(expand2square(image.convert("RGB")), image_resolution, image_resolution, False)
|
152 |
# generated control_
|
153 |
print("start to generate control image")
|
154 |
preprocessor = Preprocessor()
|