Upload 3 files
Browse files- app.py +65 -39
- mod.py +8 -3
- requirements.txt +1 -1
app.py
CHANGED
@@ -24,6 +24,7 @@ from tagger.fl2flux import predict_tags_fl2_flux
|
|
24 |
# Initialize the base model
|
25 |
base_model = models[0]
|
26 |
controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
|
|
|
27 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
28 |
controlnet_union = None
|
29 |
controlnet = None
|
@@ -39,32 +40,32 @@ def change_base_model(repo_id: str, cn_on: bool, progress=gr.Progress(track_tqdm
|
|
39 |
global last_model
|
40 |
global last_cn_on
|
41 |
dtype = torch.bfloat16
|
|
|
42 |
try:
|
43 |
-
if (repo_id == last_model and cn_on is last_cn_on) or not is_repo_name(repo_id) or not is_repo_exists(repo_id): return
|
44 |
if cn_on:
|
45 |
-
progress(0, desc=f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}")
|
46 |
print(f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}")
|
47 |
clear_cache()
|
48 |
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
|
49 |
controlnet = FluxMultiControlNetModel([controlnet_union])
|
50 |
pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=dtype)
|
51 |
-
#pipe.enable_model_cpu_offload()
|
52 |
last_model = repo_id
|
53 |
last_cn_on = cn_on
|
54 |
-
progress(1, desc=f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
|
55 |
print(f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
|
56 |
else:
|
57 |
-
progress(0, desc=f"Loading model: {repo_id}")
|
58 |
print(f"Loading model: {repo_id}")
|
59 |
clear_cache()
|
60 |
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype)
|
61 |
-
#pipe.enable_model_cpu_offload()
|
62 |
last_model = repo_id
|
63 |
last_cn_on = cn_on
|
64 |
-
progress(1, desc=f"Model loaded: {repo_id}")
|
65 |
print(f"Model loaded: {repo_id}")
|
66 |
except Exception as e:
|
67 |
-
print(e)
|
|
|
68 |
return gr.update(visible=True)
|
69 |
|
70 |
change_base_model.zerogpu = True
|
@@ -113,15 +114,16 @@ def update_selection(evt: gr.SelectData, width, height):
|
|
113 |
|
114 |
@spaces.GPU(duration=70)
|
115 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress=gr.Progress(track_tqdm=True)):
|
116 |
-
pipe
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
125 |
if not cn_on or len(modes) == 0:
|
126 |
progress(0, desc="Start Inference.")
|
127 |
image = pipe(
|
@@ -135,6 +137,8 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
135 |
).images[0]
|
136 |
else:
|
137 |
progress(0, desc="Start Inference with ControlNet.")
|
|
|
|
|
138 |
image = pipe(
|
139 |
prompt=prompt_mash,
|
140 |
control_image=images,
|
@@ -147,14 +151,14 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
147 |
generator=generator,
|
148 |
joint_attention_kwargs={"scale": lora_scale},
|
149 |
).images[0]
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
raise Exception(f"Inference Error: {e}")
|
154 |
return image
|
155 |
|
156 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
157 |
lora_scale, lora_json, cn_on, progress=gr.Progress(track_tqdm=True)):
|
|
|
158 |
if selected_index is None and not is_valid_lora(lora_json):
|
159 |
gr.Info("LoRA isn't selected.")
|
160 |
# raise gr.Error("You must select a LoRA before proceeding.")
|
@@ -192,7 +196,7 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
192 |
if randomize_seed:
|
193 |
seed = random.randint(0, MAX_SEED)
|
194 |
|
195 |
-
progress(
|
196 |
|
197 |
image = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress)
|
198 |
if is_valid_lora(lora_json):
|
@@ -200,6 +204,8 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
200 |
pipe.unload_lora_weights()
|
201 |
if selected_index is not None: pipe.unload_lora_weights()
|
202 |
pipe.to("cpu")
|
|
|
|
|
203 |
clear_cache()
|
204 |
return image, seed
|
205 |
|
@@ -390,6 +396,7 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as app:
|
|
390 |
cn_mode = [None] * num_cns
|
391 |
cn_scale = [None] * num_cns
|
392 |
cn_image = [None] * num_cns
|
|
|
393 |
cn_res = [None] * num_cns
|
394 |
cn_num = [None] * num_cns
|
395 |
for i in range(num_cns):
|
@@ -399,42 +406,56 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as app:
|
|
399 |
cn_scale[i] = gr.Slider(label=f"ControlNet {int(i+1)} Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.75)
|
400 |
cn_res[i] = gr.Slider(label=f"ControlNet {int(i+1)} Preprocess resolution", minimum=128, maximum=512, value=384, step=1)
|
401 |
cn_num[i] = gr.Number(i, visible=False)
|
402 |
-
|
|
|
|
|
403 |
|
404 |
gallery.select(
|
405 |
update_selection,
|
406 |
inputs=[width, height],
|
407 |
-
outputs=[prompt, selected_info, selected_index, width, height]
|
|
|
|
|
408 |
)
|
409 |
custom_lora.input(
|
410 |
add_custom_lora,
|
411 |
inputs=[custom_lora],
|
412 |
-
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
|
|
|
|
|
413 |
)
|
414 |
custom_lora_button.click(
|
415 |
remove_custom_lora,
|
416 |
-
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
|
|
|
|
|
417 |
)
|
418 |
gr.on(
|
419 |
triggers=[generate_button.click, prompt.submit],
|
420 |
fn=change_base_model,
|
421 |
inputs=[model_name, cn_on],
|
422 |
-
outputs=[result]
|
|
|
|
|
423 |
).success(
|
424 |
fn=run_lora,
|
425 |
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
426 |
lora_scale, lora_repo_json, cn_on],
|
427 |
-
outputs=[result, seed]
|
|
|
|
|
428 |
)
|
429 |
|
430 |
-
deselect_lora_button.click(deselect_lora, None, [prompt, selected_info, selected_index, width, height])
|
431 |
gr.on(
|
432 |
triggers=[model_name.change, cn_on.change],
|
433 |
fn=change_base_model,
|
434 |
inputs=[model_name, cn_on],
|
435 |
-
outputs=[result]
|
|
|
|
|
436 |
)
|
437 |
-
prompt_enhance.click(enhance_prompt, [prompt], [prompt])
|
438 |
|
439 |
gr.on(
|
440 |
triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit],
|
@@ -449,7 +470,7 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as app:
|
|
449 |
lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
|
450 |
|
451 |
for i, l in enumerate(lora_repo):
|
452 |
-
deselect_lora_button.click(lambda: ("", 1.0), None, [lora_repo[i], lora_wt[i]])
|
453 |
gr.on(
|
454 |
triggers=[lora_download[i].click],
|
455 |
fn=download_my_lora,
|
@@ -479,8 +500,8 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as app:
|
|
479 |
outputs=[cn_on],
|
480 |
queue=True,
|
481 |
show_api=False,
|
482 |
-
)
|
483 |
-
|
484 |
|
485 |
tagger_generate_from_image.click(
|
486 |
lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
|
@@ -582,7 +603,8 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as app:
|
|
582 |
pg_create_caption_button.click(
|
583 |
create_caption,
|
584 |
inputs=[pg_input_image],
|
585 |
-
outputs=[pg_caption_output]
|
|
|
586 |
)
|
587 |
|
588 |
pg_generate_button.click(
|
@@ -592,20 +614,23 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as app:
|
|
592 |
pg_additional_details, pg_photography_styles, pg_device, pg_photographer,
|
593 |
pg_artist, pg_digital_artform,
|
594 |
pg_place, pg_lighting, pg_clothing, pg_composition, pg_pose, pg_background],
|
595 |
-
outputs=[pg_output, gr.Number(visible=False), pg_t5xxl_output, pg_clip_l_output, pg_clip_g_output]
|
|
|
596 |
)
|
597 |
|
598 |
pg_add_caption_button.click(
|
599 |
prompt_generator.add_caption_to_prompt,
|
600 |
inputs=[pg_output, pg_caption_output],
|
601 |
-
outputs=[pg_output]
|
|
|
602 |
)
|
603 |
|
604 |
pg_generate_text_button.click(
|
605 |
huggingface_node.generate,
|
606 |
inputs=[pg_model, pg_output, pg_happy_talk, pg_compress, pg_compression_level,
|
607 |
pg_poster, pg_custom_base_prompt],
|
608 |
-
outputs=pg_text_output
|
|
|
609 |
)
|
610 |
|
611 |
def update_all_options(choice):
|
@@ -644,7 +669,8 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as app:
|
|
644 |
pg_roles, pg_hairstyles, pg_clothing,
|
645 |
pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details,
|
646 |
pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform
|
647 |
-
]
|
|
|
648 |
)
|
649 |
|
650 |
app.queue()
|
|
|
24 |
# Initialize the base model
|
25 |
base_model = models[0]
|
26 |
controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
|
27 |
+
#controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union-alpha'
|
28 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
29 |
controlnet_union = None
|
30 |
controlnet = None
|
|
|
40 |
global last_model
|
41 |
global last_cn_on
|
42 |
dtype = torch.bfloat16
|
43 |
+
#dtype = torch.float8_e4m3fn
|
44 |
try:
|
45 |
+
if (repo_id == last_model and cn_on is last_cn_on) or not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(visible=True)
|
46 |
if cn_on:
|
47 |
+
#progress(0, desc=f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}")
|
48 |
print(f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}")
|
49 |
clear_cache()
|
50 |
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
|
51 |
controlnet = FluxMultiControlNetModel([controlnet_union])
|
52 |
pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=dtype)
|
|
|
53 |
last_model = repo_id
|
54 |
last_cn_on = cn_on
|
55 |
+
#progress(1, desc=f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
|
56 |
print(f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
|
57 |
else:
|
58 |
+
#progress(0, desc=f"Loading model: {repo_id}")
|
59 |
print(f"Loading model: {repo_id}")
|
60 |
clear_cache()
|
61 |
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype)
|
|
|
62 |
last_model = repo_id
|
63 |
last_cn_on = cn_on
|
64 |
+
#progress(1, desc=f"Model loaded: {repo_id}")
|
65 |
print(f"Model loaded: {repo_id}")
|
66 |
except Exception as e:
|
67 |
+
print(f"Model load Error: {e}")
|
68 |
+
raise gr.Error(f"Model load Error: {e}")
|
69 |
return gr.update(visible=True)
|
70 |
|
71 |
change_base_model.zerogpu = True
|
|
|
114 |
|
115 |
@spaces.GPU(duration=70)
|
116 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress=gr.Progress(track_tqdm=True)):
|
117 |
+
global pipe
|
118 |
+
global controlnet
|
119 |
+
global controlnet_union
|
120 |
+
try:
|
121 |
+
pipe.to("cuda")
|
122 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
123 |
+
|
124 |
+
with calculateDuration("Generating image"):
|
125 |
+
# Generate image
|
126 |
+
modes, images, scales = get_control_params()
|
127 |
if not cn_on or len(modes) == 0:
|
128 |
progress(0, desc="Start Inference.")
|
129 |
image = pipe(
|
|
|
137 |
).images[0]
|
138 |
else:
|
139 |
progress(0, desc="Start Inference with ControlNet.")
|
140 |
+
if controlnet is not None: controlnet.to("cuda")
|
141 |
+
if controlnet_union is not None: controlnet_union.to("cuda")
|
142 |
image = pipe(
|
143 |
prompt=prompt_mash,
|
144 |
control_image=images,
|
|
|
151 |
generator=generator,
|
152 |
joint_attention_kwargs={"scale": lora_scale},
|
153 |
).images[0]
|
154 |
+
except Exception as e:
|
155 |
+
print(e)
|
156 |
+
raise gr.Error(f"Inference Error: {e}")
|
|
|
157 |
return image
|
158 |
|
159 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
160 |
lora_scale, lora_json, cn_on, progress=gr.Progress(track_tqdm=True)):
|
161 |
+
global pipe
|
162 |
if selected_index is None and not is_valid_lora(lora_json):
|
163 |
gr.Info("LoRA isn't selected.")
|
164 |
# raise gr.Error("You must select a LoRA before proceeding.")
|
|
|
196 |
if randomize_seed:
|
197 |
seed = random.randint(0, MAX_SEED)
|
198 |
|
199 |
+
progress(0, desc="Running Inference.")
|
200 |
|
201 |
image = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress)
|
202 |
if is_valid_lora(lora_json):
|
|
|
204 |
pipe.unload_lora_weights()
|
205 |
if selected_index is not None: pipe.unload_lora_weights()
|
206 |
pipe.to("cpu")
|
207 |
+
if controlnet is not None: controlnet.to("cpu")
|
208 |
+
if controlnet_union is not None: controlnet_union.to("cpu")
|
209 |
clear_cache()
|
210 |
return image, seed
|
211 |
|
|
|
396 |
cn_mode = [None] * num_cns
|
397 |
cn_scale = [None] * num_cns
|
398 |
cn_image = [None] * num_cns
|
399 |
+
cn_image_ref = [None] * num_cns
|
400 |
cn_res = [None] * num_cns
|
401 |
cn_num = [None] * num_cns
|
402 |
for i in range(num_cns):
|
|
|
406 |
cn_scale[i] = gr.Slider(label=f"ControlNet {int(i+1)} Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.75)
|
407 |
cn_res[i] = gr.Slider(label=f"ControlNet {int(i+1)} Preprocess resolution", minimum=128, maximum=512, value=384, step=1)
|
408 |
cn_num[i] = gr.Number(i, visible=False)
|
409 |
+
with gr.Row():
|
410 |
+
cn_image_ref[i] = gr.Image(label="Image Reference", type="pil", format="png", height=256, sources=["upload", "clipboard"], show_fullscreen_button=False, show_share_button=False)
|
411 |
+
cn_image[i] = gr.Image(label="Control Image", type="pil", format="png", height=256, show_share_button=False, show_fullscreen_button=False, interactive=False)
|
412 |
|
413 |
gallery.select(
|
414 |
update_selection,
|
415 |
inputs=[width, height],
|
416 |
+
outputs=[prompt, selected_info, selected_index, width, height],
|
417 |
+
queue=False,
|
418 |
+
show_api=False,
|
419 |
)
|
420 |
custom_lora.input(
|
421 |
add_custom_lora,
|
422 |
inputs=[custom_lora],
|
423 |
+
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt],
|
424 |
+
queue=False,
|
425 |
+
show_api=False,
|
426 |
)
|
427 |
custom_lora_button.click(
|
428 |
remove_custom_lora,
|
429 |
+
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora],
|
430 |
+
queue=False,
|
431 |
+
show_api=False,
|
432 |
)
|
433 |
gr.on(
|
434 |
triggers=[generate_button.click, prompt.submit],
|
435 |
fn=change_base_model,
|
436 |
inputs=[model_name, cn_on],
|
437 |
+
outputs=[result],
|
438 |
+
queue=False,
|
439 |
+
show_api=False,
|
440 |
).success(
|
441 |
fn=run_lora,
|
442 |
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
443 |
lora_scale, lora_repo_json, cn_on],
|
444 |
+
outputs=[result, seed],
|
445 |
+
queue=True,
|
446 |
+
show_api=True,
|
447 |
)
|
448 |
|
449 |
+
deselect_lora_button.click(deselect_lora, None, [prompt, selected_info, selected_index, width, height], queue=False, show_api=False)
|
450 |
gr.on(
|
451 |
triggers=[model_name.change, cn_on.change],
|
452 |
fn=change_base_model,
|
453 |
inputs=[model_name, cn_on],
|
454 |
+
outputs=[result],
|
455 |
+
queue=True,
|
456 |
+
show_api=False,
|
457 |
)
|
458 |
+
prompt_enhance.click(enhance_prompt, [prompt], [prompt], queue=False, show_api=False)
|
459 |
|
460 |
gr.on(
|
461 |
triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit],
|
|
|
470 |
lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
|
471 |
|
472 |
for i, l in enumerate(lora_repo):
|
473 |
+
deselect_lora_button.click(lambda: ("", 1.0), None, [lora_repo[i], lora_wt[i]], queue=False, show_api=False)
|
474 |
gr.on(
|
475 |
triggers=[lora_download[i].click],
|
476 |
fn=download_my_lora,
|
|
|
500 |
outputs=[cn_on],
|
501 |
queue=True,
|
502 |
show_api=False,
|
503 |
+
).success(set_control_union_image, [cn_num[i], cn_mode[i], cn_image_ref[i], height, width, cn_res[i]], [cn_image[i]], queue=False, show_api=False)
|
504 |
+
cn_image_ref[i].upload(set_control_union_image, [cn_num[i], cn_mode[i], cn_image_ref[i], height, width, cn_res[i]], [cn_image[i]], queue=False, show_api=False)
|
505 |
|
506 |
tagger_generate_from_image.click(
|
507 |
lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
|
|
|
603 |
pg_create_caption_button.click(
|
604 |
create_caption,
|
605 |
inputs=[pg_input_image],
|
606 |
+
outputs=[pg_caption_output],
|
607 |
+
show_api=False,
|
608 |
)
|
609 |
|
610 |
pg_generate_button.click(
|
|
|
614 |
pg_additional_details, pg_photography_styles, pg_device, pg_photographer,
|
615 |
pg_artist, pg_digital_artform,
|
616 |
pg_place, pg_lighting, pg_clothing, pg_composition, pg_pose, pg_background],
|
617 |
+
outputs=[pg_output, gr.Number(visible=False), pg_t5xxl_output, pg_clip_l_output, pg_clip_g_output],
|
618 |
+
show_api=False,
|
619 |
)
|
620 |
|
621 |
pg_add_caption_button.click(
|
622 |
prompt_generator.add_caption_to_prompt,
|
623 |
inputs=[pg_output, pg_caption_output],
|
624 |
+
outputs=[pg_output],
|
625 |
+
show_api=False,
|
626 |
)
|
627 |
|
628 |
pg_generate_text_button.click(
|
629 |
huggingface_node.generate,
|
630 |
inputs=[pg_model, pg_output, pg_happy_talk, pg_compress, pg_compression_level,
|
631 |
pg_poster, pg_custom_base_prompt],
|
632 |
+
outputs=pg_text_output,
|
633 |
+
show_api=False,
|
634 |
)
|
635 |
|
636 |
def update_all_options(choice):
|
|
|
669 |
pg_roles, pg_hairstyles, pg_clothing,
|
670 |
pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details,
|
671 |
pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform
|
672 |
+
],
|
673 |
+
show_api=False,
|
674 |
)
|
675 |
|
676 |
app.queue()
|
mod.py
CHANGED
@@ -169,6 +169,7 @@ def preprocess_image(image: Image.Image, control_mode: str, height: int, width:
|
|
169 |
image_resolution = max(width, height)
|
170 |
image_before = resize_image(expand2square(image.convert("RGB")), image_resolution, image_resolution, False)
|
171 |
# generated control_
|
|
|
172 |
print("start to generate control image")
|
173 |
preprocessor = Preprocessor()
|
174 |
if control_mode == "depth_midas":
|
@@ -219,7 +220,9 @@ def preprocess_image(image: Image.Image, control_mode: str, height: int, width:
|
|
219 |
image_width, image_height = control_image.size
|
220 |
|
221 |
image_after = resize_image(control_image, width, height, False)
|
222 |
-
|
|
|
|
|
223 |
return image_after
|
224 |
|
225 |
|
@@ -236,8 +239,9 @@ def set_control_union_mode(i: int, mode: str, scale: str):
|
|
236 |
else: return gr.update(visible=True)
|
237 |
|
238 |
|
239 |
-
def set_control_union_image(i: int, mode: str, image: Image.Image, height: int, width: int, preprocess_resolution: int):
|
240 |
global control_images
|
|
|
241 |
control_images[i] = preprocess_image(image, mode, height, width, preprocess_resolution)
|
242 |
return control_images[i]
|
243 |
|
@@ -267,8 +271,9 @@ def get_trigger_word(lorajson: list[dict]):
|
|
267 |
|
268 |
# https://huggingface.co/docs/diffusers/v0.23.1/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora
|
269 |
# https://github.com/huggingface/diffusers/issues/4919
|
270 |
-
def fuse_loras(pipe, lorajson: list[dict]):
|
271 |
if not lorajson or not isinstance(lorajson, list): return
|
|
|
272 |
a_list = []
|
273 |
w_list = []
|
274 |
for d in lorajson:
|
|
|
169 |
image_resolution = max(width, height)
|
170 |
image_before = resize_image(expand2square(image.convert("RGB")), image_resolution, image_resolution, False)
|
171 |
# generated control_
|
172 |
+
progress(0, desc="start to generate control image")
|
173 |
print("start to generate control image")
|
174 |
preprocessor = Preprocessor()
|
175 |
if control_mode == "depth_midas":
|
|
|
220 |
image_width, image_height = control_image.size
|
221 |
|
222 |
image_after = resize_image(control_image, width, height, False)
|
223 |
+
ref_width, ref_height = image.size
|
224 |
+
progress(1, desc=f"generate control image success: {ref_width}x{ref_height} => {image_width}x{image_height}")
|
225 |
+
print(f"generate control image success: {ref_width}x{ref_height} => {image_width}x{image_height}")
|
226 |
return image_after
|
227 |
|
228 |
|
|
|
239 |
else: return gr.update(visible=True)
|
240 |
|
241 |
|
242 |
+
def set_control_union_image(i: int, mode: str, image: Image.Image | None, height: int, width: int, preprocess_resolution: int):
|
243 |
global control_images
|
244 |
+
if image is None: return None
|
245 |
control_images[i] = preprocess_image(image, mode, height, width, preprocess_resolution)
|
246 |
return control_images[i]
|
247 |
|
|
|
271 |
|
272 |
# https://huggingface.co/docs/diffusers/v0.23.1/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora
|
273 |
# https://github.com/huggingface/diffusers/issues/4919
|
274 |
+
def fuse_loras(pipe, lorajson: list[dict], progress=gr.Progress(track_tqdm=True)):
|
275 |
if not lorajson or not isinstance(lorajson, list): return
|
276 |
+
progress(0, desc="Fusing LoRA.")
|
277 |
a_list = []
|
278 |
w_list = []
|
279 |
for d in lorajson:
|
requirements.txt
CHANGED
@@ -4,7 +4,7 @@ torchvision
|
|
4 |
huggingface_hub
|
5 |
accelerate
|
6 |
git+https://github.com/huggingface/diffusers
|
7 |
-
|
8 |
peft
|
9 |
sentencepiece
|
10 |
timm
|
|
|
4 |
huggingface_hub
|
5 |
accelerate
|
6 |
git+https://github.com/huggingface/diffusers
|
7 |
+
transformers
|
8 |
peft
|
9 |
sentencepiece
|
10 |
timm
|