Upload app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,8 @@ import json
|
|
4 |
import logging
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
-
from diffusers import DiffusionPipeline
|
|
|
8 |
from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel
|
9 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
10 |
import copy
|
@@ -21,16 +22,29 @@ from flux import (search_civitai_lora, select_civitai_lora, search_civitai_lora_
|
|
21 |
from tagger.tagger import predict_tags_wd, compose_prompt_to_copy
|
22 |
from tagger.fl2flux import predict_tags_fl2_flux
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# Initialize the base model
|
25 |
base_model = models[0]
|
26 |
controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
|
27 |
#controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union-alpha'
|
28 |
-
|
|
|
|
|
29 |
controlnet_union = None
|
30 |
controlnet = None
|
31 |
last_model = models[0]
|
32 |
last_cn_on = False
|
33 |
|
|
|
|
|
|
|
|
|
34 |
# https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union
|
35 |
# https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union
|
36 |
def change_base_model(repo_id: str, cn_on: bool):
|
@@ -39,8 +53,6 @@ def change_base_model(repo_id: str, cn_on: bool):
|
|
39 |
global controlnet
|
40 |
global last_model
|
41 |
global last_cn_on
|
42 |
-
dtype = torch.bfloat16
|
43 |
-
#dtype = torch.float8_e4m3fn
|
44 |
try:
|
45 |
if (repo_id == last_model and cn_on is last_cn_on) or not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(visible=True)
|
46 |
if cn_on:
|
@@ -50,6 +62,7 @@ def change_base_model(repo_id: str, cn_on: bool):
|
|
50 |
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
|
51 |
controlnet = FluxMultiControlNetModel([controlnet_union])
|
52 |
pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=dtype)
|
|
|
53 |
last_model = repo_id
|
54 |
last_cn_on = cn_on
|
55 |
#progress(1, desc=f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
|
@@ -58,7 +71,8 @@ def change_base_model(repo_id: str, cn_on: bool):
|
|
58 |
#progress(0, desc=f"Loading model: {repo_id}")
|
59 |
print(f"Loading model: {repo_id}")
|
60 |
clear_cache()
|
61 |
-
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype)
|
|
|
62 |
last_model = repo_id
|
63 |
last_cn_on = cn_on
|
64 |
#progress(1, desc=f"Model loaded: {repo_id}")
|
@@ -70,12 +84,6 @@ def change_base_model(repo_id: str, cn_on: bool):
|
|
70 |
|
71 |
change_base_model.zerogpu = True
|
72 |
|
73 |
-
# Load LoRAs from JSON file
|
74 |
-
with open('loras.json', 'r') as f:
|
75 |
-
loras = json.load(f)
|
76 |
-
|
77 |
-
MAX_SEED = 2**32-1
|
78 |
-
|
79 |
class calculateDuration:
|
80 |
def __init__(self, activity_name=""):
|
81 |
self.activity_name = activity_name
|
@@ -115,9 +123,13 @@ def update_selection(evt: gr.SelectData, width, height):
|
|
115 |
@spaces.GPU(duration=70)
|
116 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress=gr.Progress(track_tqdm=True)):
|
117 |
global pipe
|
|
|
|
|
118 |
global controlnet
|
119 |
global controlnet_union
|
120 |
try:
|
|
|
|
|
121 |
pipe.to("cuda")
|
122 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
123 |
|
@@ -126,7 +138,7 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
126 |
modes, images, scales = get_control_params()
|
127 |
if not cn_on or len(modes) == 0:
|
128 |
progress(0, desc="Start Inference.")
|
129 |
-
|
130 |
prompt=prompt_mash,
|
131 |
num_inference_steps=steps,
|
132 |
guidance_scale=cfg_scale,
|
@@ -134,12 +146,15 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
134 |
height=height,
|
135 |
generator=generator,
|
136 |
joint_attention_kwargs={"scale": lora_scale},
|
137 |
-
|
|
|
|
|
|
|
138 |
else:
|
139 |
progress(0, desc="Start Inference with ControlNet.")
|
140 |
if controlnet is not None: controlnet.to("cuda")
|
141 |
if controlnet_union is not None: controlnet_union.to("cuda")
|
142 |
-
|
143 |
prompt=prompt_mash,
|
144 |
control_image=images,
|
145 |
control_mode=modes,
|
@@ -150,15 +165,19 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
150 |
controlnet_conditioning_scale=scales,
|
151 |
generator=generator,
|
152 |
joint_attention_kwargs={"scale": lora_scale},
|
153 |
-
).images
|
|
|
154 |
except Exception as e:
|
155 |
print(e)
|
156 |
raise gr.Error(f"Inference Error: {e}")
|
157 |
-
return image
|
158 |
|
159 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
160 |
lora_scale, lora_json, cn_on, progress=gr.Progress(track_tqdm=True)):
|
161 |
global pipe
|
|
|
|
|
|
|
|
|
162 |
if selected_index is None and not is_valid_lora(lora_json):
|
163 |
gr.Info("LoRA isn't selected.")
|
164 |
# raise gr.Error("You must select a LoRA before proceeding.")
|
@@ -197,17 +216,23 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
197 |
seed = random.randint(0, MAX_SEED)
|
198 |
|
199 |
progress(0, desc="Running Inference.")
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
202 |
if is_valid_lora(lora_json):
|
203 |
pipe.unfuse_lora()
|
204 |
pipe.unload_lora_weights()
|
205 |
if selected_index is not None: pipe.unload_lora_weights()
|
206 |
pipe.to("cpu")
|
|
|
|
|
207 |
if controlnet is not None: controlnet.to("cpu")
|
208 |
if controlnet_union is not None: controlnet_union.to("cpu")
|
209 |
clear_cache()
|
210 |
-
return
|
211 |
|
212 |
def get_huggingface_safetensors(link):
|
213 |
split_link = link.split("/")
|
|
|
4 |
import logging
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
8 |
+
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
9 |
from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel
|
10 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
11 |
import copy
|
|
|
22 |
from tagger.tagger import predict_tags_wd, compose_prompt_to_copy
|
23 |
from tagger.fl2flux import predict_tags_fl2_flux
|
24 |
|
25 |
+
# Load LoRAs from JSON file
|
26 |
+
with open('loras.json', 'r') as f:
|
27 |
+
loras = json.load(f)
|
28 |
+
|
29 |
+
dtype = torch.bfloat16
|
30 |
+
#dtype = torch.float8_e4m3fn
|
31 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
# Initialize the base model
|
33 |
base_model = models[0]
|
34 |
controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
|
35 |
#controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union-alpha'
|
36 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
37 |
+
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
38 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
|
39 |
controlnet_union = None
|
40 |
controlnet = None
|
41 |
last_model = models[0]
|
42 |
last_cn_on = False
|
43 |
|
44 |
+
MAX_SEED = 2**32-1
|
45 |
+
|
46 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
47 |
+
|
48 |
# https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union
|
49 |
# https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union
|
50 |
def change_base_model(repo_id: str, cn_on: bool):
|
|
|
53 |
global controlnet
|
54 |
global last_model
|
55 |
global last_cn_on
|
|
|
|
|
56 |
try:
|
57 |
if (repo_id == last_model and cn_on is last_cn_on) or not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(visible=True)
|
58 |
if cn_on:
|
|
|
62 |
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
|
63 |
controlnet = FluxMultiControlNetModel([controlnet_union])
|
64 |
pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=dtype)
|
65 |
+
#pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
66 |
last_model = repo_id
|
67 |
last_cn_on = cn_on
|
68 |
#progress(1, desc=f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
|
|
|
71 |
#progress(0, desc=f"Loading model: {repo_id}")
|
72 |
print(f"Loading model: {repo_id}")
|
73 |
clear_cache()
|
74 |
+
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype, vae=taef1)
|
75 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
76 |
last_model = repo_id
|
77 |
last_cn_on = cn_on
|
78 |
#progress(1, desc=f"Model loaded: {repo_id}")
|
|
|
84 |
|
85 |
change_base_model.zerogpu = True
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
class calculateDuration:
|
88 |
def __init__(self, activity_name=""):
|
89 |
self.activity_name = activity_name
|
|
|
123 |
@spaces.GPU(duration=70)
|
124 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress=gr.Progress(track_tqdm=True)):
|
125 |
global pipe
|
126 |
+
global taef1
|
127 |
+
global good_vae
|
128 |
global controlnet
|
129 |
global controlnet_union
|
130 |
try:
|
131 |
+
good_vae.to("cuda")
|
132 |
+
taef1.to("cuda")
|
133 |
pipe.to("cuda")
|
134 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
135 |
|
|
|
138 |
modes, images, scales = get_control_params()
|
139 |
if not cn_on or len(modes) == 0:
|
140 |
progress(0, desc="Start Inference.")
|
141 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
142 |
prompt=prompt_mash,
|
143 |
num_inference_steps=steps,
|
144 |
guidance_scale=cfg_scale,
|
|
|
146 |
height=height,
|
147 |
generator=generator,
|
148 |
joint_attention_kwargs={"scale": lora_scale},
|
149 |
+
output_type="pil",
|
150 |
+
good_vae=good_vae,
|
151 |
+
):
|
152 |
+
yield img
|
153 |
else:
|
154 |
progress(0, desc="Start Inference with ControlNet.")
|
155 |
if controlnet is not None: controlnet.to("cuda")
|
156 |
if controlnet_union is not None: controlnet_union.to("cuda")
|
157 |
+
for img in pipe(
|
158 |
prompt=prompt_mash,
|
159 |
control_image=images,
|
160 |
control_mode=modes,
|
|
|
165 |
controlnet_conditioning_scale=scales,
|
166 |
generator=generator,
|
167 |
joint_attention_kwargs={"scale": lora_scale},
|
168 |
+
).images:
|
169 |
+
yield img
|
170 |
except Exception as e:
|
171 |
print(e)
|
172 |
raise gr.Error(f"Inference Error: {e}")
|
|
|
173 |
|
174 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
175 |
lora_scale, lora_json, cn_on, progress=gr.Progress(track_tqdm=True)):
|
176 |
global pipe
|
177 |
+
global taef1
|
178 |
+
global good_vae
|
179 |
+
global controlnet
|
180 |
+
global controlnet_union
|
181 |
if selected_index is None and not is_valid_lora(lora_json):
|
182 |
gr.Info("LoRA isn't selected.")
|
183 |
# raise gr.Error("You must select a LoRA before proceeding.")
|
|
|
216 |
seed = random.randint(0, MAX_SEED)
|
217 |
|
218 |
progress(0, desc="Running Inference.")
|
219 |
+
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress)
|
220 |
+
# Consume the generator to get the final image
|
221 |
+
final_image = None
|
222 |
+
for image in image_generator:
|
223 |
+
final_image = image
|
224 |
+
yield image, seed # Yield intermediate images and seed
|
225 |
if is_valid_lora(lora_json):
|
226 |
pipe.unfuse_lora()
|
227 |
pipe.unload_lora_weights()
|
228 |
if selected_index is not None: pipe.unload_lora_weights()
|
229 |
pipe.to("cpu")
|
230 |
+
good_vae.to("cpu")
|
231 |
+
taef1.to("cpu")
|
232 |
if controlnet is not None: controlnet.to("cpu")
|
233 |
if controlnet_union is not None: controlnet_union.to("cpu")
|
234 |
clear_cache()
|
235 |
+
return final_image, seed # Return the final image and seed
|
236 |
|
237 |
def get_huggingface_safetensors(link):
|
238 |
split_link = link.split("/")
|