File size: 72,508 Bytes
25e2f7f
d34ac72
 
 
a761054
62387de
c9302f4
a761054
 
 
00150bd
f55d446
 
d34ac72
 
f55d446
 
57302a8
5be865f
de8ac53
a761054
f3a071e
a761054
 
4c19db8
76f1f49
 
 
c7aa4c4
cd39c08
411e182
cd39c08
f55d446
 
 
 
4c19db8
 
 
5e404f6
5302530
 
 
f3a071e
4c19db8
 
57302a8
5be865f
 
 
c9302f4
5be865f
f0c3651
 
5302530
 
a761054
 
4c19db8
 
2e4c5d9
4c19db8
 
a761054
 
5302530
b2351e2
a761054
b2351e2
 
 
 
 
 
 
 
5da9aec
 
 
 
 
a761054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5302530
 
c9302f4
4c19db8
a761054
 
5302530
a761054
 
b2351e2
4c19db8
c9302f4
4c19db8
 
 
 
 
a761054
 
 
 
 
5302530
5be865f
 
5da9aec
5302530
 
d34ac72
00150bd
 
 
 
 
 
 
 
 
57302a8
 
 
 
 
d34ac72
 
 
 
 
 
 
f55d446
d34ac72
 
 
 
 
 
 
 
f55d446
 
 
26a0cbe
f55d446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26a0cbe
f55d446
 
 
 
 
 
 
 
f0ac7fb
f55d446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51aefe8
 
f55d446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51aefe8
 
f55d446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5da9aec
 
 
 
05657da
5da9aec
 
 
05657da
 
5da9aec
 
05657da
 
 
5da9aec
 
05657da
5da9aec
 
 
05657da
 
4d511ed
f55d446
 
 
5da9aec
3db42c3
 
 
 
 
f55d446
 
 
 
26a0cbe
 
f55d446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d511ed
f55d446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d34ac72
f55d446
 
 
 
 
 
 
 
 
d34ac72
 
 
036cfdd
a761054
036cfdd
d0d2198
57302a8
 
 
 
d0d2198
 
 
 
a761054
57302a8
f3a071e
4c19db8
a761054
4c19db8
f0c3651
 
 
 
 
 
f55d446
4c19db8
 
57302a8
4c19db8
 
a761054
57302a8
4c19db8
57302a8
 
36dc6e9
a761054
4c19db8
f0c3651
 
 
 
 
 
 
 
 
f55d446
57302a8
4c19db8
 
d0d2198
 
4c19db8
d34ac72
c9302f4
036cfdd
a761054
 
 
c9302f4
57302a8
 
5da9aec
 
a761054
 
 
 
 
 
 
5da9aec
c9302f4
 
 
a761054
 
 
 
 
5da9aec
a761054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5da9aec
a761054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9302f4
 
 
 
a761054
 
 
 
 
f55d446
09fa6ac
b397bfd
fd8a02a
d34ac72
f55d446
 
a761054
 
f55d446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c19db8
b2351e2
4c19db8
f55d446
 
 
 
4c19db8
f55d446
 
 
 
a761054
 
 
 
 
 
 
4c19db8
a761054
 
cd39c08
f55d446
 
 
 
ddeb3f3
 
 
 
 
 
 
 
 
 
a761054
ddeb3f3
 
 
84880d5
ddeb3f3
 
 
 
 
 
 
84880d5
ddeb3f3
 
 
 
 
a761054
 
f55d446
 
 
 
d34ac72
 
 
 
 
f55d446
d0d2198
5da9aec
a761054
57302a8
c9302f4
 
57302a8
c9302f4
 
 
 
 
 
 
 
 
d34ac72
f55d446
 
de8ac53
f55d446
 
4d511ed
f55d446
 
 
05657da
 
f55d446
 
 
4d511ed
f55d446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de8ac53
 
f55d446
 
 
 
 
 
 
 
 
 
de8ac53
 
f55d446
 
de8ac53
f55d446
 
d34ac72
62387de
 
 
 
 
 
 
05657da
 
d34ac72
bf56799
62387de
d34ac72
 
f55d446
 
de8ac53
f55d446
de8ac53
 
 
5e404f6
 
 
 
62387de
f55d446
 
 
 
62387de
76f1f49
 
d34ac72
9631069
cd39c08
 
f55d446
cd39c08
 
f55d446
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
8ac6201
cd39c08
4c19db8
 
 
b8d4104
cd39c08
f55d446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd39c08
f0ac7fb
cd39c08
76f1f49
05657da
de8ac53
f55d446
 
 
 
 
f0ac7fb
4c19db8
c7aa4c4
62387de
57302a8
c7aa4c4
 
 
 
cd39c08
57302a8
 
5da9aec
57302a8
 
 
a761054
57302a8
a761054
57302a8
 
 
 
 
 
 
 
 
a761054
 
57302a8
a761054
57302a8
 
cd39c08
57302a8
 
 
a761054
 
57302a8
a761054
 
57302a8
 
 
 
 
de8ac53
 
f55d446
de8ac53
 
 
 
 
 
 
 
 
c533c6b
 
 
5be865f
c533c6b
 
 
ad37494
c533c6b
 
 
 
 
de8ac53
35b1cf8
f55d446
76f1f49
 
cd39c08
de8ac53
76f1f49
 
 
c533c6b
 
76f1f49
 
 
82bcda0
35b1cf8
cd39c08
de8ac53
 
 
57302a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d34ac72
 
f55d446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d34ac72
f55d446
de8ac53
4d511ed
f55d446
de8ac53
f55d446
de8ac53
4d511ed
f55d446
de8ac53
d34ac72
 
db65c96
a761054
d0d2198
5e404f6
d0d2198
e3b569b
db65c96
d34ac72
a761054
57302a8
4c19db8
d0d2198
 
c7aa4c4
d34ac72
5da9aec
a761054
 
5e404f6
 
 
 
 
 
 
 
a761054
d0d2198
d34ac72
cd39c08
76f1f49
cd39c08
76f1f49
 
 
cd39c08
 
 
 
 
 
76f1f49
cd39c08
 
d0d2198
635b226
 
76f1f49
635b226
 
 
 
 
 
cd39c08
 
76f1f49
cd39c08
635b226
cd39c08
 
 
 
76f1f49
cd39c08
f0c3651
f1d6334
 
 
 
 
 
 
 
d0d2198
 
635b226
a03d34d
cd39c08
 
 
 
 
411e182
a03d34d
cd39c08
 
 
5404b87
cd39c08
5404b87
 
 
cd39c08
 
 
 
 
 
 
 
 
 
5404b87
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
5404b87
 
cd39c08
 
5404b87
cd39c08
 
 
 
 
 
 
 
 
5404b87
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5404b87
cd39c08
 
f3a071e
 
 
 
cd39c08
f3a071e
 
 
 
 
cd39c08
f3a071e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455cf48
f3a071e
 
 
 
 
455cf48
f3a071e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455cf48
 
 
f3a071e
 
d34ac72
f55d446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a071e
594ea93
0ec40c7
594ea93
d34ac72
5da9aec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
import spaces
import gradio as gr
import json
import torch
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image, AutoPipelineForInpainting, GGUFQuantizationConfig
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from diffusers.utils import load_image
from diffusers import (FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel, FluxControlNetImg2ImgPipeline,
                       FluxTransformer2DModel, FluxControlNetInpaintPipeline, FluxImg2ImgPipeline, FluxInpaintPipeline, FluxFillPipeline, FluxControlPipeline)
from transformers import T5EncoderModel
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download, HfApi
import os
import copy
import random
import time
import requests
import pandas as pd
import numpy as np
from pathlib import Path

from env import models, models_dev, models_schnell, models_fill, models_canny, models_depth, num_loras, num_cns, HF_TOKEN, single_file_base_models
from mod import (clear_cache, get_repo_safetensors, is_repo_name, is_repo_exists, get_model_trigger,
                 description_ui, compose_lora_json, is_valid_lora, fuse_loras, turbo_loras, save_image, preprocess_i2i_image,
                 get_trigger_word, enhance_prompt, set_control_union_image, get_canny_image, get_depth_image,
                 get_control_union_mode, set_control_union_mode, get_control_params, translate_to_en)
from modutils import (search_civitai_lora, select_civitai_lora, search_civitai_lora_json,
                      download_my_lora_flux, get_all_lora_tupled_list, apply_lora_prompt_flux,
                      update_loras_flux, update_civitai_selection, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD,
                      get_t2i_model_info, download_hf_file, save_image_history)
from tagger.tagger import predict_tags_wd, compose_prompt_to_copy
from tagger.fl2flux import predict_tags_fl2_flux

#Load prompts for randomization
df = pd.read_csv('prompts.csv', header=None)
prompt_values = df.values.flatten()

# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
    loras = json.load(f)

# Initialize the base model
base_model = models[0]
controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
#controlnet_model_union_repo = 'Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro'
dtype = torch.bfloat16
#dtype = torch.float8_e4m3fn
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype, token=HF_TOKEN)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype, token=HF_TOKEN)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1, token=HF_TOKEN)
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model, vae=good_vae, transformer=pipe.transformer, text_encoder=pipe.text_encoder,
 tokenizer=pipe.tokenizer, text_encoder_2=pipe.text_encoder_2, tokenizer_2=pipe.tokenizer_2, torch_dtype=dtype, token=HF_TOKEN)
controlnet_union = None
controlnet = None
last_model = models[0]
last_cn_on = False
last_task = "Text-to-Image"
last_dtype_str = "BF16"
#controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
#controlnet = FluxMultiControlNetModel([controlnet_union])
#controlnet.config = controlnet_union.config

MAX_SEED = 2**32-1
TASK_TYPE_T2I = ["Text-to-Image"]
TASK_TYPE_I2I = ["Image-to-Image", "Inpainting", "Flux Fill"] # , "Canny", "Depth"

def unload_lora():
    global pipe, pipe_i2i
    try:
        #pipe.unfuse_lora()
        pipe.unload_lora_weights()
        #pipe_i2i.unfuse_lora()
        pipe_i2i.unload_lora_weights()
    except Exception as e:
        print(e)

def download_file_mod(url, directory=os.getcwd()):
    path = download_hf_file(directory, url, hf_token=HF_TOKEN)
    if not path: raise Exception(f"Download error: {url}")
    return path

def print_progress(desc: str, proceed: float=0.0, progress=gr.Progress(track_tqdm=True)):
    progress(proceed, desc=desc)
    print(desc)

#@spaces.GPU(duration=30)
def load_quantized_control(control_repo: str, dtype, hf_token):
    transformer = FluxTransformer2DModel.from_pretrained(control_repo, subfolder="transformer", torch_dtype=dtype, token=hf_token).to("cpu")
    text_encoder_2 = T5EncoderModel.from_pretrained(control_repo, subfolder="text_encoder_2", torch_dtype=dtype, token=hf_token).to("cpu")
    return transformer, text_encoder_2

def load_pipeline(repo_id: str, cn_on: bool, model_type: str, task: str, dtype_str: str, hf_token: str, progress=gr.Progress(track_tqdm=True)):
    pipe = None
    pipe_i2i = None
    try:
        controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
        if task == "Flux Fill" or repo_id in models_fill:
            model_type = "fill"
            if repo_id in set(models_dev + models_schnell): repo_id = models_fill[0]
        if dtype_str == "BF16": dtype = torch.bfloat16
        else: dtype = torch.bfloat16
        single_file_base_model = single_file_base_models.get(model_type, models[0])
        kwargs = {}
        transformer_model = FluxTransformer2DModel
        t5_model = T5EncoderModel
        if task == "Flux Fill":
            pipeline = FluxFillPipeline
            pipeline_i2i = FluxFillPipeline
        elif task == "Canny" or task == "Depth":
            pipeline = DiffusionPipeline
            pipeline_i2i = FluxControlPipeline
        elif cn_on: # with ControlNet
            print_progress(f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}", 0, progress)
            controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype, token=hf_token)
            controlnet = FluxMultiControlNetModel([controlnet_union])
            controlnet.config = controlnet_union.config
            pipeline = FluxControlNetPipeline
            pipeline_i2i = FluxControlNetInpaintPipeline if task == "Inpainting" else FluxControlNetImg2ImgPipeline
            kwargs["controlnet"] = controlnet
        else: # without ControlNet
            print_progress(f"Loading model: {repo_id}", 0, progress)
            pipeline = DiffusionPipeline
            pipeline_i2i = AutoPipelineForInpainting if task == "Inpainting" else AutoPipelineForImage2Image
        if task == "Canny" or task == "Depth": # FluxControlPipeline
            if task == "Canny": control_repo = models_canny[0]
            elif task == "Depth": control_repo = models_depth[0]
            transformer = transformer_model.from_pretrained(control_repo, subfolder="transformer", torch_dtype=dtype, token=hf_token)
            text_encoder_2 = t5_model.from_pretrained(control_repo, subfolder="text_encoder_2", torch_dtype=dtype, token=hf_token)
            #transformer, text_encoder_2 = load_quantized_control(control_repo, dtype, hf_token)
            pipe = pipeline.from_pretrained(models_dev[0], transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, token=hf_token)
            pipe_i2i = pipeline_i2i.from_pipe(pipe, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype)
        elif ".safetensors" in repo_id or ".gguf" in repo_id: # from single file
            file_url = repo_id.replace("/resolve/main/", "/blob/main/").replace("?download=true", "")
            if ".gguf" in file_url: transformer_model.from_single_file(file_url, subfolder="transformer",
                quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), torch_dtype=dtype, config=single_file_base_model)
            else: transformer = transformer_model.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model)
            pipe = pipeline.from_pretrained(single_file_base_model, transformer=transformer, torch_dtype=dtype, token=hf_token, **kwargs)
            pipe_i2i = pipeline_i2i.from_pretrained(single_file_base_model, vae=pipe.vae, transformer=pipe.transformer,
                text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer, text_encoder_2=pipe.text_encoder_2, tokenizer_2=pipe.tokenizer_2,
                torch_dtype=dtype, token=hf_token, **kwargs)
        else: # from diffusers repo
            pipe = pipeline.from_pretrained(repo_id, torch_dtype=dtype, token=hf_token, **kwargs)
            pipe_i2i = pipeline_i2i.from_pretrained(repo_id, vae=pipe.vae, transformer=pipe.transformer, text_encoder=pipe.text_encoder,
                tokenizer=pipe.tokenizer, text_encoder_2=pipe.text_encoder_2, tokenizer_2=pipe.tokenizer_2, torch_dtype=dtype, token=hf_token, **kwargs)
        if cn_on: print_progress(f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}", 1, progress)
        else: print_progress(f"Model loaded: {repo_id}", 1, progress)
    except Exception as e:
        print(e)
        gr.Warning(f"Failed to load pipeline: {e}")
    finally:
        return pipe, pipe_i2i

#load_pipeline.zerogpu = True

# https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union
# https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union
# https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux
#@spaces.GPU()
def change_base_model(repo_id: str, cn_on: bool, disable_model_cache: bool, model_type: str, task: str, dtype_str: str, progress=gr.Progress(track_tqdm=True)):
    global pipe, pipe_i2i, taef1, good_vae, controlnet_union, controlnet, last_model, last_cn_on, last_task, last_dtype_str, dtype
    try:
        if not disable_model_cache and (repo_id == last_model and cn_on is last_cn_on and task == last_task and dtype_str == last_dtype_str)\
            or ((not is_repo_name(repo_id) or not is_repo_exists(repo_id)) and not ".safetensors" in repo_id): return gr.update()
        unload_lora()
        pipe.to("cpu")
        pipe_i2i.to("cpu")
        good_vae.to("cpu")
        taef1.to("cpu")
        if controlnet is not None: controlnet.to("cpu")
        if controlnet_union is not None: controlnet_union.to("cpu")
        clear_cache()
        pipe, pipe_i2i = load_pipeline(repo_id, cn_on, model_type, task, dtype_str, HF_TOKEN, progress)
        last_model = repo_id
        last_cn_on = cn_on
        last_task = task
        last_dtype_str = dtype_str
    except Exception as e:
        print(f"Model load Error: {repo_id} {e}")
        raise gr.Error(f"Model load Error: {repo_id} {e}") from e
    return gr.update()

change_base_model.zerogpu = True

def is_repo_public(repo_id: str):
    api = HfApi()
    try:
        if api.repo_exists(repo_id=repo_id, token=False): return True
        else: return False
    except Exception as e:
        print(f"Error: Failed to connect {repo_id}. {e}")
        return False

def calc_sigmas(num_inference_steps: int, sigmas_factor: float):
    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
    sigmas = sigmas * sigmas_factor
    return sigmas

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")

def download_file(url, directory=None):
    if directory is None:
        directory = os.getcwd()  # Use current working directory if not specified

    # Get the filename from the URL
    filename = url.split('/')[-1]
    
    # Full path for the downloaded file
    filepath = os.path.join(directory, filename)
    
    # Download the file
    response = requests.get(url)
    response.raise_for_status()  # Raise an exception for bad status codes
    
    # Write the content to the file
    with open(filepath, 'wb') as file:
        file.write(response.content)
    
    return filepath

def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
    selected_index = evt.index
    selected_indices = selected_indices or []
    if selected_index in selected_indices:
        selected_indices.remove(selected_index)
    else:
        if len(selected_indices) < 2:
            selected_indices.append(selected_index)
        else:
            gr.Warning("You can select up to 2 LoRAs, remove one to select a new one.")
            return gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), width, height, gr.update(), gr.update()

    selected_info_1 = "Select a LoRA 1"
    selected_info_2 = "Select a LoRA 2"
    lora_scale_1 = 1.15
    lora_scale_2 = 1.15
    lora_image_1 = None
    lora_image_2 = None
    if len(selected_indices) >= 1:
        lora1 = loras_state[selected_indices[0]]
        selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
        lora_image_1 = lora1['image']
    if len(selected_indices) >= 2:
        lora2 = loras_state[selected_indices[1]]
        selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
        lora_image_2 = lora2['image']

    if selected_indices:
        last_selected_lora = loras_state[selected_indices[-1]]
        new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
    else:
        new_placeholder = "Type a prompt"

    return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2

def remove_lora_1(selected_indices, loras_state):
    if len(selected_indices) >= 1:
        selected_indices.pop(0)
    selected_info_1 = "Select LoRA 1"
    selected_info_2 = "Select LoRA 2"
    lora_scale_1 = 1.15
    lora_scale_2 = 1.15
    lora_image_1 = None
    lora_image_2 = None
    if len(selected_indices) >= 1:
        lora1 = loras_state[selected_indices[0]]
        selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
        lora_image_1 = lora1['image']
    if len(selected_indices) >= 2:
        lora2 = loras_state[selected_indices[1]]
        selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
        lora_image_2 = lora2['image']
    return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2

def remove_lora_2(selected_indices, loras_state):
    if len(selected_indices) >= 2:
        selected_indices.pop(1)
    selected_info_1 = "Select LoRA 1"
    selected_info_2 = "Select LoRA 2"
    lora_scale_1 = 1.15
    lora_scale_2 = 1.15
    lora_image_1 = None
    lora_image_2 = None
    if len(selected_indices) >= 1:
        lora1 = loras_state[selected_indices[0]]
        selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
        lora_image_1 = lora1['image']
    if len(selected_indices) >= 2:
        lora2 = loras_state[selected_indices[1]]
        selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
        lora_image_2 = lora2['image']
    return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2

def randomize_loras(selected_indices, loras_state):
    if len(loras_state) < 2:
        raise gr.Error("Not enough LoRAs to randomize.")
    selected_indices = random.sample(range(len(loras_state)), 2)
    lora1 = loras_state[selected_indices[0]]
    lora2 = loras_state[selected_indices[1]]
    selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
    selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
    lora_scale_1 = 1.15
    lora_scale_2 = 1.15
    lora_image_1 = lora1['image']
    lora_image_2 = lora2['image']
    random_prompt = random.choice(prompt_values)
    return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, random_prompt

def download_loras_images(loras_json_orig: list[dict]):
    api = HfApi(token=HF_TOKEN)
    loras_json = []
    for lora in loras_json_orig:
        repo = lora.get("repo", None)
        if repo is None or not api.repo_exists(repo_id=repo, token=HF_TOKEN):
            print(f"LoRA '{repo}' is not exsit.")
            continue
        if "title" not in lora.keys() or "trigger_word" not in lora.keys() or "image" not in lora.keys():
            title, _repo, _path, trigger_word, image_def = check_custom_model(repo)
            if "title" not in lora.keys(): lora["title"] = title
            if "trigger_word" not in lora.keys(): lora["trigger_word"] = trigger_word
            if "image" not in lora.keys(): lora["image"] = image_def
        image = lora.get("image", None)
        try:
            if not is_repo_public(repo) and image is not None and "http" in image and repo in image: image = download_file_mod(image)
            lora["image"] = image if image else "/home/user/app/custom.png"
        except Exception as e:
            print(f"Failed to download LoRA '{repo}''s image '{image if image else ''}'. {e}")
            lora["image"] = "/home/user/app/custom.png"
        loras_json.append(lora)
    return loras_json

def add_custom_lora(custom_lora, selected_indices, current_loras, gallery):
    if custom_lora:
        try:
            title, repo, path, trigger_word, image = check_custom_model(custom_lora)
            if image is not None and "http" in image and not is_repo_public(repo) and repo in image:
                try:
                    image = download_file_mod(image)
                except Exception as e:
                    print(e)
                    image = None
            print(f"Loaded custom LoRA: {repo}")
            existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None)
            if existing_item_index is None:
                if repo.endswith(".safetensors") and repo.startswith("http"):
                    #repo = download_file(repo)
                    repo = download_file_mod(repo)
                new_item = {
                    "image": image if image else "/home/user/app/custom.png",
                    "title": title,
                    "repo": repo,
                    "weights": path,
                    "trigger_word": trigger_word
                }
                print(f"New LoRA: {new_item}")
                existing_item_index = len(current_loras)
                current_loras.append(new_item)
            
            # Update gallery
            gallery_items = [(item["image"], item["title"]) for item in current_loras]
            # Update selected_indices if there's room
            if len(selected_indices) < 2:
                selected_indices.append(existing_item_index)
            else:
                gr.Warning("You can select up to 2 LoRAs, remove one to select a new one.")

            # Update selected_info and images
            selected_info_1 = "Select a LoRA 1"
            selected_info_2 = "Select a LoRA 2"
            lora_scale_1 = 1.15
            lora_scale_2 = 1.15
            lora_image_1 = None
            lora_image_2 = None
            if len(selected_indices) >= 1:
                lora1 = current_loras[selected_indices[0]]
                selected_info_1 = f"### LoRA 1 Selected: {lora1['title']} ✨"
                lora_image_1 = lora1['image'] if lora1['image'] else None
            if len(selected_indices) >= 2:
                lora2 = current_loras[selected_indices[1]]
                selected_info_2 = f"### LoRA 2 Selected: {lora2['title']} ✨"
                lora_image_2 = lora2['image'] if lora2['image'] else None
            print("Finished adding custom LoRA")
            return (
                current_loras,
                gr.update(value=gallery_items),
                selected_info_1, 
                selected_info_2,
                selected_indices,
                lora_scale_1,
                lora_scale_2,
                lora_image_1,
                lora_image_2
            )
        except Exception as e:
            print(e)
            gr.Warning(str(e))
            return current_loras, gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update()
    else:
        return current_loras, gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update()

def remove_custom_lora(selected_indices, current_loras, gallery):
    if current_loras:
        custom_lora_repo = current_loras[-1]['repo']
        # Remove from loras list
        current_loras = current_loras[:-1]
        # Remove from selected_indices if selected
        custom_lora_index = len(current_loras)
        if custom_lora_index in selected_indices:
            selected_indices.remove(custom_lora_index)
    # Update gallery
    gallery_items = [(item["image"], item["title"]) for item in current_loras]
    # Update selected_info and images
    selected_info_1 = "Select a LoRA 1"
    selected_info_2 = "Select a LoRA 2"
    lora_scale_1 = 1.15
    lora_scale_2 = 1.15
    lora_image_1 = None
    lora_image_2 = None
    if len(selected_indices) >= 1:
        lora1 = current_loras[selected_indices[0]]
        selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
        lora_image_1 = lora1['image']
    if len(selected_indices) >= 2:
        lora2 = current_loras[selected_indices[1]]
        selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
        lora_image_2 = lora2['image']
    return (
        current_loras,
        gr.update(value=gallery_items),
        selected_info_1,
        selected_info_2,
        selected_indices,
        lora_scale_1,
        lora_scale_2,
        lora_image_1,
        lora_image_2
    )

@spaces.GPU(duration=70)
@torch.inference_mode()
def generate_image(prompt_mash: str, steps: int, seed: int, cfg_scale: float, width: int, height: int, sigmas_factor: float, cn_on: bool, progress=gr.Progress(track_tqdm=True)):
    global pipe, taef1, good_vae, controlnet, controlnet_union
    try:
        good_vae.to(device)
        taef1.to(device)
        generator = torch.Generator(device=device).manual_seed(int(float(seed)))
        sigmas = calc_sigmas(steps, sigmas_factor)
        
        with calculateDuration("Generating image"):
            # Generate image
            modes, images, scales = get_control_params()
            if not cn_on or len(modes) == 0: # without ControlNet
                pipe.to(device)
                pipe.vae = taef1
                pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
                print_progress("Start Inference.")
                for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
                    prompt=prompt_mash,
                    num_inference_steps=steps,
                    guidance_scale=cfg_scale,
                    width=width,
                    height=height,
                    generator=generator,
                    joint_attention_kwargs={"scale": 1.0},
                    output_type="pil",
                    good_vae=good_vae,
                    sigmas=sigmas,
                ):
                    yield img
            else: # with ControlNet
                pipe.to(device)
                pipe.vae = good_vae
                if controlnet_union is not None: controlnet_union.to(device)
                if controlnet is not None: controlnet.to(device)
                pipe.enable_model_cpu_offload()
                print_progress("Start Inference with ControlNet.")
                for img in pipe(
                    prompt=prompt_mash,
                    control_image=images,
                    control_mode=modes,
                    num_inference_steps=steps,
                    guidance_scale=cfg_scale,
                    width=width,
                    height=height,
                    controlnet_conditioning_scale=scales,
                    generator=generator,
                    joint_attention_kwargs={"scale": 1.0},
                    sigmas=sigmas,
                ).images:
                    yield img
    except Exception as e:
        print(e)
        raise gr.Error(f"Inference Error: {e}") from e

@spaces.GPU(duration=70)
@torch.inference_mode()
def generate_image_to_image(prompt_mash: str, image_input_path_dict: dict, image_strength: float, task_type: str, blur_mask: bool, blur_factor: float,

                            steps: int, cfg_scale: float, width: int, height: int, sigmas_factor: float, seed: int, cn_on: bool, progress=gr.Progress(track_tqdm=True)):
    global pipe_i2i, good_vae, controlnet, controlnet_union
    try:
        good_vae.to(device)
        generator = torch.Generator(device=device).manual_seed(int(float(seed)))
        image_input_path = image_input_path_dict['background']
        mask_path = image_input_path_dict['layers'][0]
        is_mask = True if task_type == "Inpainting" or task_type == "Flux Fill" else False
        is_fill = True if task_type == "Flux Fill" else False
        is_depth = True if task_type == "Depth" else False
        is_canny = True if task_type == "Canny" else False
        kwargs = {}
        if not is_fill: kwargs["strength"] = image_strength
        if sigmas_factor < 1.0 and task_type != "Image-to-Image": kwargs["sigmas"] = calc_sigmas(steps, sigmas_factor)

        with calculateDuration("Generating image"):
            # Generate image
            modes, images, scales = get_control_params()
            if not cn_on or len(modes) == 0: # without ControlNet
                pipe_i2i.to(device)
                pipe_i2i.vae = good_vae
                image_input = load_image(image_input_path)
                if is_mask:
                    mask_input = load_image(mask_path)
                    if blur_mask: mask_input = pipe_i2i.mask_processor.blur(mask_input, blur_factor=blur_factor)
                    kwargs["mask_image"] = mask_input
                    if is_fill: print_progress("Start Flux Fill Inference.")
                    else: print_progress("Start Inpainting Inference.")
                elif is_canny:
                    image_input = get_canny_image(image_input, height, width)
                    print_progress("Start Canny Inference.")
                elif is_depth:
                    image_input = get_depth_image(image_input, height, width)
                    print_progress("Start Depth Inference.")
                else: print_progress("Start I2I Inference.")
                final_image = pipe_i2i(
                    prompt=prompt_mash,
                    image=image_input,
                    num_inference_steps=steps,
                    guidance_scale=cfg_scale,
                    #width=width,
                    #height=height,
                    generator=generator,
                    joint_attention_kwargs={"scale": 1.0},
                    output_type="pil",
                    **kwargs,
                ).images[0]
                return final_image 
            else: # with ControlNet
                pipe_i2i.to(device)
                pipe_i2i.vae = good_vae
                image_input = load_image(image_input_path)
                if controlnet_union is not None: controlnet_union.to(device)
                if controlnet is not None: controlnet.to(device)
                if is_mask:
                    mask_input = load_image(mask_path)
                    if blur_mask: mask_input = pipe_i2i.mask_processor.blur(mask_input, blur_factor=blur_factor)
                    kwargs["mask_image"] = mask_input
                    if is_fill: print_progress("Start Flux Fill Inference with ControlNet.")
                    else: print_progress("Start Inpainting Inference with ControlNet.")
                else: print_progress("Start I2I Inference with ControlNet.")
                pipe_i2i.enable_model_cpu_offload()
                final_image = pipe_i2i(
                    prompt=prompt_mash,
                    control_image=images,
                    control_mode=modes,
                    image=image_input,
                    num_inference_steps=steps,
                    guidance_scale=cfg_scale,
                    #width=width,
                    #height=height,
                    controlnet_conditioning_scale=scales,
                    generator=generator,
                    joint_attention_kwargs={"scale": 1.0},
                    output_type="pil",
                    **kwargs,
                ).images[0]
                return final_image
    except Exception as e:
        print(e)
        raise gr.Error(f"I2I Inference Error: {e}") from e

def run_lora(prompt: str, image_input: dict, image_strength: float, task_type: str, turbo_mode: str, blur_mask: bool, blur_factor: float,

             cfg_scale: float, steps: int, selected_indices, lora_scale_1: float, lora_scale_2: float,

             randomize_seed: bool, seed: int, width: int, height: int, sigmas_factor: float, loras_state,

             lora_json, cn_on: bool, translate_on: bool, progress=gr.Progress(track_tqdm=True)):
    global pipe, pipe_i2i
    if not selected_indices and not is_valid_lora(lora_json):
        gr.Info("LoRA isn't selected.")
    #    raise gr.Error("You must select a LoRA before proceeding.")
    progress(0, desc="Preparing Inference.")

    selected_loras = [loras_state[idx] for idx in selected_indices]

    if task_type in set(TASK_TYPE_I2I): is_i2i = True
    else: is_i2i = False
    if translate_on: prompt = translate_to_en(prompt)

    # Build the prompt with trigger words
    prepends = []
    appends = []
    for lora in selected_loras:
        trigger_word = lora.get('trigger_word', '')
        if trigger_word:
            if lora.get("trigger_position") == "prepend":
                prepends.append(trigger_word)
            else:
                appends.append(trigger_word)
    prompt_mash = " ".join(prepends + [prompt] + appends)
    print("Prompt Mash: ", prompt_mash) #

    # Unload previous LoRA weights
    with calculateDuration("Unloading LoRA"):
        unload_lora()

    print(pipe.get_active_adapters()) #
    print(pipe_i2i.get_active_adapters()) #

    clear_cache() #

    # Build the prompt for External LoRAs
    prompt_mash = prompt_mash + get_model_trigger(last_model)
    lora_names = []
    lora_weights = []
    # Load Turbo LoRA weights
    if turbo_mode != "None":
        if is_i2i: pipe_i2i, lora_names, lora_weights, steps = turbo_loras(pipe_i2i, turbo_mode, lora_names, lora_weights)
        else: pipe, lora_names, lora_weights, steps = turbo_loras(pipe, turbo_mode, lora_names, lora_weights)

    # Load External LoRA weights
    if is_valid_lora(lora_json):
        with calculateDuration("Loading External LoRA weights"):
            if is_i2i: pipe_i2i, lora_names, lora_weights = fuse_loras(pipe_i2i, lora_json, lora_names, lora_weights)
            else: pipe, lora_names, lora_weights = fuse_loras(pipe, lora_json, lora_names, lora_weights)
            trigger_word = get_trigger_word(lora_json)
            prompt_mash = f"{prompt_mash} {trigger_word}"
    print("Prompt Mash: ", prompt_mash) #

    # Load LoRA weights with respective scales
    if selected_indices:
        with calculateDuration("Loading LoRA weights"):
            for idx, lora in enumerate(selected_loras):
                lora_name = f"lora_{idx}"
                lora_names.append(lora_name)
                print(f"Lora Name: {lora_name}")
                lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2)
                lora_path = lora['repo']
                weight_name = lora.get("weights")
                print(f"Lora Path: {lora_path}")
                if is_i2i:
                    pipe_i2i.load_lora_weights(
                        lora_path, 
                        weight_name=weight_name if weight_name else None,
                        low_cpu_mem_usage=False,
                        adapter_name=lora_name,
                        token=HF_TOKEN
                    )
                else:
                    pipe.load_lora_weights(
                        lora_path, 
                        weight_name=weight_name if weight_name else None,
                        low_cpu_mem_usage=False,
                        adapter_name=lora_name,
                        token=HF_TOKEN
                    )
            print("Loaded LoRAs:", lora_names)
    if selected_indices or is_valid_lora(lora_json):
        if is_i2i: pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
        else: pipe.set_adapters(lora_names, adapter_weights=lora_weights)

    print(pipe.get_active_adapters()) #
    print(pipe_i2i.get_active_adapters()) #

    # Set random seed for reproducibility
    with calculateDuration("Randomizing seed"):
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
    
    # Generate image
    progress(0, desc="Running Inference.")
    if is_i2i:
        final_image = generate_image_to_image(prompt_mash, image_input, image_strength, task_type, blur_mask, blur_factor,
                                              steps, cfg_scale, width, height, sigmas_factor, seed, cn_on)
        yield save_image(final_image, None, last_model, prompt_mash, height, width, steps, cfg_scale, seed), seed, gr.update(visible=False)
    else:
        image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, sigmas_factor, cn_on)
        # Consume the generator to get the final image
        final_image = None
        step_counter = 0
        for image in image_generator:
            step_counter+=1
            final_image = image
            progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
            yield image, seed, gr.update(value=progress_bar, visible=True)
        yield save_image(final_image, None, last_model, prompt_mash, height, width, steps, cfg_scale, seed), seed, gr.update(value=progress_bar, visible=False)

run_lora.zerogpu = True

def get_huggingface_safetensors(link):
    split_link = link.split("/")
    if len(split_link) == 2:
        model_card = ModelCard.load(link, token=HF_TOKEN)
        base_model = model_card.data.get("base_model")
        print(f"Base model: {base_model}")
        if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
            #raise Exception("Not a FLUX LoRA!")
            gr.Warning("Not a FLUX LoRA?")
        image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
        trigger_word = model_card.data.get("instance_prompt", "")
        image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
        fs = HfFileSystem(token=HF_TOKEN)
        safetensors_name = None
        try:
            list_of_files = fs.ls(link, detail=False)
            for file in list_of_files:
                if file.endswith(".safetensors"):
                    safetensors_name = file.split("/")[-1]
                if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
                    image_elements = file.split("/")
                    image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
        except Exception as e:
            print(e)
            raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA")
        if not safetensors_name:
            raise gr.Error("No *.safetensors file found in the repository")
        return split_link[1], link, safetensors_name, trigger_word, image_url
    else:
        raise gr.Error("Invalid Hugging Face repository link")

def check_custom_model(link):
    if link.endswith(".safetensors"):
        # Treat as direct link to the LoRA weights
        title = os.path.basename(link)
        repo = link
        path = None  # No specific weight name
        trigger_word = ""
        image_url = None
        return title, repo, path, trigger_word, image_url
    elif link.startswith("https://"):
        if "huggingface.co" in link:
            link_split = link.split("huggingface.co/")
            return get_huggingface_safetensors(link_split[1])
        else:
            raise Exception("Unsupported URL")
    else:
        # Assume it's a Hugging Face model path
        return get_huggingface_safetensors(link)

def update_history(new_image, history):
    """Updates the history gallery with the new image."""
    if history is None:
        history = []
    history.insert(0, new_image)
    return history

loras = download_loras_images(loras)

css = '''

#gen_column{align-self: stretch}

#gen_btn{height: 100%}

#title{text-align: center}

#title h1{font-size: 3em; display:inline-flex; align-items:center}

#title img{width: 100px; margin-right: 0.25em}

#gallery .grid-wrap{height: 5vh}

#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}

.custom_lora_card{margin-bottom: 1em}

.card_internal{display: flex;height: 100px;margin-top: .5em}

.card_internal img{margin-right: 1em}

.styler{--form-gap-width: 0px !important}

#progress{height:30px}

#progress .generating{display:none}

.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}

.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}

#component-8, .button_total{height: 100%; align-self: stretch;}

#loaded_loras [data-testid="block-info"]{font-size:80%}

#custom_lora_structure{background: var(--block-background-fill)}

#custom_lora_btn{margin-top: auto;margin-bottom: 11px}

#random_btn{font-size: 300%}

#component-11{align-self: stretch;}

.info { align-items: center; text-align: center; }

.desc [src$='#float'] { float: right; margin: 20px; }

'''
with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_cache=(60, 3600)) as app:
    with gr.Tab("FLUX LoRA the Explorer"):
        title = gr.HTML(
            """<h1><img src="https://huggingface.co/spaces/John6666/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA">FLUX LoRA the Explorer Mod</h1>""",
            elem_id="title",
        )
        loras_state = gr.State(loras)
        selected_indices = gr.State([])
        with gr.Row():
            with gr.Column(scale=3):
                with gr.Group():
                    with gr.Accordion("Generate Prompt from Image", open=False):
                        tagger_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
                        with gr.Accordion(label="Advanced options", open=False):
                            tagger_general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
                            tagger_character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
                            neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="", visible=False)
                            v2_character = gr.Textbox(label="Character", placeholder="hatsune miku", scale=2, visible=False)
                            v2_series = gr.Textbox(label="Series", placeholder="vocaloid", scale=2, visible=False)
                            v2_copy = gr.Button(value="Copy to clipboard", size="sm", interactive=False, visible=False)
                        tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-Flux"], label="Algorithms", value=["Use WD Tagger"])
                        tagger_generate_from_image = gr.Button(value="Generate Prompt from Image")
                    prompt = gr.Textbox(label="Prompt", lines=1, max_lines=8, placeholder="Type a prompt", show_copy_button=True)
                    with gr.Row():
                        prompt_enhance = gr.Button(value="Enhance your prompt", variant="secondary")
                        auto_trans = gr.Checkbox(label="Auto translate to English", value=False, elem_classes="info")
            with gr.Column(scale=1, elem_id="gen_column"):
                generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn", elem_classes=["button_total"])
        with gr.Row(elem_id="loaded_loras"):
            with gr.Column(scale=1, min_width=25):
                randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn")
            with gr.Column(scale=8):
                with gr.Row():
                    with gr.Column(scale=0, min_width=50):
                        lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
                    with gr.Column(scale=3, min_width=100):
                        selected_info_1 = gr.Markdown("Select a LoRA 1")
                    with gr.Column(scale=5, min_width=50):
                        lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
                with gr.Row():
                    remove_button_1 = gr.Button("Remove", size="sm")
            with gr.Column(scale=8):
                with gr.Row():
                    with gr.Column(scale=0, min_width=50):
                        lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
                    with gr.Column(scale=3, min_width=100):
                        selected_info_2 = gr.Markdown("Select a LoRA 2")
                    with gr.Column(scale=5, min_width=50):
                        lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
                with gr.Row():
                    remove_button_2 = gr.Button("Remove", size="sm")
        with gr.Row():
            with gr.Column():
                selected_info = gr.Markdown("")
                gallery = gr.Gallery([(item["image"], item["title"]) for item in loras], label="LoRA Gallery", allow_preview=False,
                                     columns=4, elem_id="gallery", show_share_button=False, interactive=False)
                with gr.Group():
                    with gr.Row(elem_id="custom_lora_structure"):
                        custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="multimodalart/vintage-ads-flux", scale=3, min_width=150)
                        add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150)
                    remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False)
                    gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
            with gr.Column():
                progress_bar = gr.Markdown(elem_id="progress",visible=False)
                result = gr.Image(label="Generated Image", format="png", type="filepath", show_share_button=False, interactive=False)
                with gr.Accordion("History", open=False):
                    history_files = gr.Files(interactive=False, visible=False)
                    history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False, format="png",
                                                 show_share_button=False, show_download_button=True)
                    history_clear_button = gr.Button(value="Clear History", variant="secondary")
                    history_clear_button.click(lambda: ([], []), None, [history_gallery, history_files], queue=False, show_api=False)
        with gr.Row():
            with gr.Accordion("Advanced Settings", open=True):
                with gr.Tab("Generation Settings"):
                    with gr.Column():
                        with gr.Group():
                            with gr.Row():
                                model_name = gr.Dropdown(label="Base Model", info="You can enter a huggingface model repo_id or path of single safetensors file to want to use.",
                                                         choices=models, value=models[0], allow_custom_value=True, min_width=320, scale=5)
                                model_type = gr.Radio(label="Model type", info="Model type of single safetensors file",
                                                      choices=list(single_file_base_models.keys()), value=list(single_file_base_models.keys())[0], scale=1)
                            model_info = gr.Markdown(elem_classes="info")
                        with gr.Row():
                            width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                            height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
                            cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
                            steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
                        with gr.Row():
                            randomize_seed = gr.Checkbox(True, label="Randomize seed")
                            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                        with gr.Row():
                            turbo_mode = gr.Radio(label="Turbo mode", choices=["None", "Hyper-FLUX.1-dev-8steps", "Hyper-FLUX.1-dev-16steps", "FLUX.1-Turbo-Alpha 8-steps"], value="None")
                            sigmas_factor = gr.Slider(label="Sigmas factor", minimum=0.01, maximum=1.00, step=0.01, value=0.95)
                            data_type = gr.Radio(label="Data type", choices=["BF16"], value="BF16", visible=False)
                            disable_model_cache = gr.Checkbox(False, label="Disable model caching")
                with gr.Tab("Image-to-Image"):
                    with gr.Row():
                        with gr.Column():
                            #input_image = gr.Image(label="Input image", type="filepath", height=256, sources=["upload", "clipboard"], show_share_button=False)
                            input_image = gr.ImageEditor(label='Input image', type='filepath', sources=["upload", "clipboard"], image_mode='RGB', show_share_button=False, show_fullscreen_button=False,
                                                         layers=False, brush=gr.Brush(colors=["white"], color_mode="fixed", default_size=32), eraser=gr.Eraser(default_size="32"), value=None,
                                                         canvas_size=(384, 384), width=384, height=512)
                        with gr.Column():

                            task_type = gr.Radio(label="Task", choices=TASK_TYPE_T2I+TASK_TYPE_I2I, value=TASK_TYPE_T2I[0])
                            image_strength = gr.Slider(label="Strength", info="Lower means more image influence in I2I, opposite in Inpaint", minimum=0.01, maximum=1.0, step=0.01, value=0.75)
                            blur_mask = gr.Checkbox(label="Blur mask", value=False)
                            blur_factor = gr.Slider(label="Blur factor", minimum=0, maximum=50, step=1, value=33)
                            input_image_preprocess = gr.Checkbox(True, label="Preprocess Input image")
                with gr.Tab("More LoRA"):
                    with gr.Accordion("External LoRA", open=True):
                        with gr.Column():
                            deselect_lora_button = gr.Button("Remove External LoRAs", variant="secondary")
                            lora_repo_json = gr.JSON(value=[{}] * num_loras, visible=False)
                            lora_repo = [None] * num_loras
                            lora_weights = [None] * num_loras
                            lora_trigger = [None] * num_loras
                            lora_wt = [None] * num_loras
                            lora_info = [None] * num_loras
                            lora_copy = [None] * num_loras
                            lora_md = [None] * num_loras
                            lora_num = [None] * num_loras
                            with gr.Row():
                                for i in range(num_loras):
                                    with gr.Column():
                                        lora_repo[i] = gr.Dropdown(label=f"LoRA {int(i+1)} Repo", choices=get_all_lora_tupled_list(), info="Input LoRA Repo ID", value="", allow_custom_value=True, min_width=320)
                                        with gr.Row():
                                            lora_weights[i] = gr.Dropdown(label=f"LoRA {int(i+1)} Filename", choices=[], info="Optional", value="", allow_custom_value=True)
                                            lora_trigger[i] = gr.Textbox(label=f"LoRA {int(i+1)} Trigger Prompt", lines=1, max_lines=4, value="")
                                            lora_wt[i] = gr.Slider(label=f"LoRA {int(i+1)} Scale", minimum=-3, maximum=3, step=0.01, value=1.00)
                                        with gr.Row():
                                            lora_info[i] = gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
                                            lora_copy[i] = gr.Button(value="Copy example to prompt", visible=False)
                                            lora_md[i] = gr.Markdown(value="", visible=False)
                                            lora_num[i] = gr.Number(i, visible=False)
                            with gr.Accordion("From URL", open=True, visible=True):
                                with gr.Row():
                                    lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=["Flux.1 D", "Flux.1 S"], value=["Flux.1 D"])
                                    lora_search_civitai_sort = gr.Radio(label="Sort", choices=CIVITAI_SORT, value="Most Downloaded")
                                    lora_search_civitai_period = gr.Radio(label="Period", choices=CIVITAI_PERIOD, value="Month")
                                with gr.Row():
                                    lora_search_civitai_query = gr.Textbox(label="Query", placeholder="flux", lines=1)
                                    lora_search_civitai_tag = gr.Dropdown(label="Tag", choices=get_civitai_tag(), value=get_civitai_tag()[0], allow_custom_value=True)
                                    lora_search_civitai_user = gr.Textbox(label="Username", lines=1)
                                lora_search_civitai_submit = gr.Button("Search on Civitai")
                                with gr.Row():
                                    lora_search_civitai_json = gr.JSON(value={}, visible=False)
                                    lora_search_civitai_desc = gr.Markdown(value="", visible=False, elem_classes="desc")
                                with gr.Accordion("Select from Gallery", open=False):
                                    lora_search_civitai_gallery = gr.Gallery([], label="Results", allow_preview=False, columns=5, show_share_button=False, interactive=False)
                                lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
                                lora_download_url = gr.Textbox(label="LoRA URL", placeholder="https://civitai.com/api/download/models/28907", lines=1)
                                with gr.Row():
                                    lora_download = [None] * num_loras
                                    for i in range(num_loras):
                                        lora_download[i] = gr.Button(f"Get and set LoRA to {int(i+1)}")
                with gr.Tab("ControlNet", visible=False):
                    with gr.Column():
                        cn_on = gr.Checkbox(False, label="Use ControlNet")
                        cn_mode = [None] * num_cns
                        cn_scale = [None] * num_cns
                        cn_image = [None] * num_cns
                        cn_image_ref = [None] * num_cns
                        cn_res = [None] * num_cns
                        cn_num = [None] * num_cns
                        with gr.Row():
                            for i in range(num_cns):
                                with gr.Column():
                                    cn_mode[i] = gr.Radio(label=f"ControlNet {int(i+1)} Mode", choices=get_control_union_mode(), value=get_control_union_mode()[0])
                                    with gr.Row():
                                        cn_scale[i] = gr.Slider(label=f"ControlNet {int(i+1)} Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.75)
                                        cn_res[i] = gr.Slider(label=f"ControlNet {int(i+1)} Preprocess resolution", minimum=128, maximum=512, value=384, step=1)
                                        cn_num[i] = gr.Number(i, visible=False)
                                    with gr.Row():
                                        cn_image_ref[i] = gr.Image(label="Image Reference", type="pil", format="png", height=256, sources=["upload", "clipboard"], show_share_button=False)
                                        cn_image[i] = gr.Image(label="Control Image", type="pil", format="png", height=256, show_share_button=False, interactive=False)

    gallery.select(
        update_selection,
        inputs=[selected_indices, loras_state, width, height],
        outputs=[prompt, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2])
    remove_button_1.click(
        remove_lora_1,
        inputs=[selected_indices, loras_state],
        outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
    )
    remove_button_2.click(
        remove_lora_2,
        inputs=[selected_indices, loras_state],
        outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
    )
    randomize_button.click(
        randomize_loras,
        inputs=[selected_indices, loras_state],
        outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, prompt]
    )
    add_custom_lora_button.click(
        add_custom_lora,
        inputs=[custom_lora, selected_indices, loras_state, gallery],
        outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
    )
    remove_custom_lora_button.click(
        remove_custom_lora,
        inputs=[selected_indices, loras_state, gallery],
        outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
    )
    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=change_base_model,
        inputs=[model_name, cn_on, disable_model_cache, model_type, task_type, data_type],
        outputs=[result],
        queue=True,
        show_api=False,
        trigger_mode="once",
    ).success(
        fn=run_lora,
        inputs=[prompt, input_image, image_strength, task_type, turbo_mode, blur_mask, blur_factor, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2,
                randomize_seed, seed, width, height, sigmas_factor, loras_state, lora_repo_json, cn_on, auto_trans], 
        outputs=[result, seed, progress_bar],
        queue=True,
        show_api=True,
    ).success(save_image_history, [result, history_gallery, history_files, model_name], [history_gallery, history_files], queue=False, show_api=False)

    input_image.clear(lambda: gr.update(value="Text-to-Image"), None, [task_type], queue=False, show_api=False)
    input_image.upload(preprocess_i2i_image, [input_image, input_image_preprocess, height, width], [input_image], queue=False, show_api=False)#\
    #.success(lambda: gr.update(value="Image-to-Image"), None, [task_type], queue=False, show_api=False)
    gr.on(
        triggers=[model_name.change, cn_on.change],
        fn=get_t2i_model_info,
        inputs=[model_name], 
        outputs=[model_info],
        queue=False,
        show_api=False,
        trigger_mode="once",
    )
    prompt_enhance.click(enhance_prompt, [prompt], [prompt], queue=False, show_api=False)

    gr.on(
        triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit],
        fn=search_civitai_lora,
        inputs=[lora_search_civitai_query, lora_search_civitai_basemodel, lora_search_civitai_sort, lora_search_civitai_period,
                lora_search_civitai_tag, lora_search_civitai_user, lora_search_civitai_gallery],
        outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query, lora_search_civitai_gallery],
        scroll_to_output=True,
        queue=True,
        show_api=False,
    )
    lora_search_civitai_json.change(search_civitai_lora_json, [lora_search_civitai_query, lora_search_civitai_basemodel], [lora_search_civitai_json], queue=True, show_api=True)  # fn for api
    lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
    lora_search_civitai_gallery.select(update_civitai_selection, None, [lora_search_civitai_result], queue=False, show_api=False)

    for i, l in enumerate(lora_repo):
        deselect_lora_button.click(lambda: ("", 1.0), None, [lora_repo[i], lora_wt[i]], queue=False, show_api=False)
        gr.on(
            triggers=[lora_download[i].click],
            fn=download_my_lora_flux,
            inputs=[lora_download_url, lora_repo[i]],
            outputs=[lora_repo[i]],
            scroll_to_output=True,
            queue=True,
            show_api=False,
        )
        gr.on(
            triggers=[lora_repo[i].change, lora_wt[i].change],
            fn=update_loras_flux,
            inputs=[prompt, lora_repo[i], lora_wt[i]],
            outputs=[prompt, lora_repo[i], lora_wt[i], lora_info[i], lora_md[i]],
            queue=False,
            trigger_mode="once",
            show_api=False,
        ).success(get_repo_safetensors, [lora_repo[i]], [lora_weights[i]], queue=False, show_api=False
        ).success(apply_lora_prompt_flux, [lora_info[i]], [lora_trigger[i]], queue=False, show_api=False
        ).success(compose_lora_json, [lora_repo_json, lora_num[i], lora_repo[i], lora_wt[i], lora_weights[i], lora_trigger[i]], [lora_repo_json], queue=False, show_api=False)
        
    for i, m in enumerate(cn_mode):
        gr.on(
            triggers=[cn_mode[i].change, cn_scale[i].change],
            fn=set_control_union_mode,
            inputs=[cn_num[i], cn_mode[i], cn_scale[i]],
            outputs=[cn_on],
            queue=True,
            show_api=False,
        ).success(set_control_union_image, [cn_num[i], cn_mode[i], cn_image_ref[i], height, width, cn_res[i]], [cn_image[i]], queue=False, show_api=False)
        cn_image_ref[i].upload(set_control_union_image, [cn_num[i], cn_mode[i], cn_image_ref[i], height, width, cn_res[i]], [cn_image[i]], queue=False, show_api=False)

    tagger_generate_from_image.click(lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
    ).success(
        predict_tags_wd,
        [tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
        [v2_series, v2_character, prompt, v2_copy],
        show_api=False,
    ).success(predict_tags_fl2_flux, [tagger_image, prompt, tagger_algorithms], [prompt], show_api=False,
    ).success(compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False)

    with gr.Tab("FLUX Prompt Generator"):
        from prompt import (PromptGenerator, HuggingFaceInferenceNode, florence_caption,
            ARTFORM, PHOTO_TYPE, ROLES, HAIRSTYLES, LIGHTING, COMPOSITION, POSE, BACKGROUND,
            PHOTOGRAPHY_STYLES, DEVICE, PHOTOGRAPHER, ARTIST, DIGITAL_ARTFORM, PLACE,
            FEMALE_DEFAULT_TAGS, MALE_DEFAULT_TAGS, FEMALE_BODY_TYPES, MALE_BODY_TYPES,
            FEMALE_CLOTHING, MALE_CLOTHING, FEMALE_ADDITIONAL_DETAILS, MALE_ADDITIONAL_DETAILS, pg_title)

        prompt_generator = PromptGenerator()
        huggingface_node = HuggingFaceInferenceNode()

        gr.HTML(pg_title)

        with gr.Row():
            with gr.Column(scale=2):
                with gr.Accordion("Basic Settings"):
                    pg_custom = gr.Textbox(label="Custom Input Prompt (optional)")
                    pg_subject = gr.Textbox(label="Subject (optional)")
                    pg_gender = gr.Radio(["female", "male"], label="Gender", value="female")
                    
                    # Add the radio button for global option selection
                    pg_global_option = gr.Radio(
                        ["Disabled", "Random", "No Figure Rand"],
                        label="Set all options to:",
                        value="Disabled"
                    )
                
                with gr.Accordion("Artform and Photo Type", open=False):
                    pg_artform = gr.Dropdown(["disabled", "random"] + ARTFORM, label="Artform", value="disabled")
                    pg_photo_type = gr.Dropdown(["disabled", "random"] + PHOTO_TYPE, label="Photo Type", value="disabled")
            
                with gr.Accordion("Character Details", open=False):
                    pg_body_types = gr.Dropdown(["disabled", "random"] + FEMALE_BODY_TYPES + MALE_BODY_TYPES, label="Body Types", value="disabled")
                    pg_default_tags = gr.Dropdown(["disabled", "random"] + FEMALE_DEFAULT_TAGS + MALE_DEFAULT_TAGS, label="Default Tags", value="disabled")
                    pg_roles = gr.Dropdown(["disabled", "random"] + ROLES, label="Roles", value="disabled")
                    pg_hairstyles = gr.Dropdown(["disabled", "random"] + HAIRSTYLES, label="Hairstyles", value="disabled")
                    pg_clothing = gr.Dropdown(["disabled", "random"] + FEMALE_CLOTHING + MALE_CLOTHING, label="Clothing", value="disabled")
            
                with gr.Accordion("Scene Details", open=False):
                    pg_place = gr.Dropdown(["disabled", "random"] + PLACE, label="Place", value="disabled")
                    pg_lighting = gr.Dropdown(["disabled", "random"] + LIGHTING, label="Lighting", value="disabled")
                    pg_composition = gr.Dropdown(["disabled", "random"] + COMPOSITION, label="Composition", value="disabled")
                    pg_pose = gr.Dropdown(["disabled", "random"] + POSE, label="Pose", value="disabled")
                    pg_background = gr.Dropdown(["disabled", "random"] + BACKGROUND, label="Background", value="disabled")
            
                with gr.Accordion("Style and Artist", open=False):
                    pg_additional_details = gr.Dropdown(["disabled", "random"] + FEMALE_ADDITIONAL_DETAILS + MALE_ADDITIONAL_DETAILS, label="Additional Details", value="disabled")
                    pg_photography_styles = gr.Dropdown(["disabled", "random"] + PHOTOGRAPHY_STYLES, label="Photography Styles", value="disabled")
                    pg_device = gr.Dropdown(["disabled", "random"] + DEVICE, label="Device", value="disabled")
                    pg_photographer = gr.Dropdown(["disabled", "random"] + PHOTOGRAPHER, label="Photographer", value="disabled")
                    pg_artist = gr.Dropdown(["disabled", "random"] + ARTIST, label="Artist", value="disabled")
                    pg_digital_artform = gr.Dropdown(["disabled", "random"] + DIGITAL_ARTFORM, label="Digital Artform", value="disabled")
                
                pg_generate_button = gr.Button("Generate Prompt")

            with gr.Column(scale=2):
                with gr.Accordion("Image and Caption", open=False):
                    pg_input_image = gr.Image(label="Input Image (optional)")
                    pg_caption_output = gr.Textbox(label="Generated Caption", lines=3)
                    pg_create_caption_button = gr.Button("Create Caption")
                    pg_add_caption_button = gr.Button("Add Caption to Prompt")

                with gr.Accordion("Prompt Generation", open=True):
                    pg_output = gr.Textbox(label="Generated Prompt / Input Text", lines=4)
                    pg_t5xxl_output = gr.Textbox(label="T5XXL Output", visible=True)
                    pg_clip_l_output = gr.Textbox(label="CLIP L Output", visible=True)
                    pg_clip_g_output = gr.Textbox(label="CLIP G Output", visible=True)
            
            with gr.Column(scale=2):
                with gr.Accordion("Prompt Generation with LLM", open=False):
                    pg_happy_talk = gr.Checkbox(label="Happy Talk", value=True)
                    pg_compress = gr.Checkbox(label="Compress", value=True)
                    pg_compression_level = gr.Radio(["soft", "medium", "hard"], label="Compression Level", value="hard")
                    pg_poster = gr.Checkbox(label="Poster", value=False)
                    pg_custom_base_prompt = gr.Textbox(label="Custom Base Prompt", lines=5)
                pg_generate_text_button = gr.Button("Generate Prompt with LLM (Llama 3.1 70B)")
                pg_text_output = gr.Textbox(label="Generated Text", lines=10)

        def create_caption(image):
            if image is not None:
                return florence_caption(image)
            return ""

        pg_create_caption_button.click(
            create_caption,
            inputs=[pg_input_image],
            outputs=[pg_caption_output]
        )

        def generate_prompt_with_dynamic_seed(*args):
            # Generate a new random seed
            dynamic_seed = random.randint(0, 1000000)
            
            # Call the generate_prompt function with the dynamic seed
            result = prompt_generator.generate_prompt(dynamic_seed, *args)
            
            # Return the result along with the used seed
            return [dynamic_seed] + list(result)

        pg_generate_button.click(
            generate_prompt_with_dynamic_seed,
            inputs=[pg_custom, pg_subject, pg_gender, pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles,
                    pg_additional_details, pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform,
                    pg_place, pg_lighting, pg_clothing, pg_composition, pg_pose, pg_background, pg_input_image],
            outputs=[gr.Number(label="Used Seed", visible=False), pg_output, gr.Number(visible=False), pg_t5xxl_output, pg_clip_l_output, pg_clip_g_output]
        ) #

        pg_add_caption_button.click(
            prompt_generator.add_caption_to_prompt,
            inputs=[pg_output, pg_caption_output],
            outputs=[pg_output]
        )

        pg_generate_text_button.click(
            huggingface_node.generate,
            inputs=[pg_output, pg_happy_talk, pg_compress, pg_compression_level, pg_poster, pg_custom_base_prompt],
            outputs=pg_text_output
        )

        def update_all_options(choice):
            updates = {}
            if choice == "Disabled":
                for dropdown in [
                    pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing,
                    pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details,
                    pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform
                ]:
                    updates[dropdown] = gr.update(value="disabled")
            elif choice == "Random":
                for dropdown in [
                    pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing,
                    pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details,
                    pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform
                ]:
                    updates[dropdown] = gr.update(value="random")
            else:  # No Figure Random
                for dropdown in [pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing, pg_pose, pg_additional_details]:
                    updates[dropdown] = gr.update(value="disabled")
                for dropdown in [pg_artform, pg_place, pg_lighting, pg_composition, pg_background, pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform]:
                    updates[dropdown] = gr.update(value="random")
            return updates
        
        pg_global_option.change(
            update_all_options,
            inputs=[pg_global_option],
            outputs=[
                pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing,
                pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details,
                pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform
            ]
        )

    with gr.Tab("PNG Info"):
        def extract_exif_data(image):
            if image is None: return ""

            try:
                metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment']

                for key in metadata_keys:
                    if key in image.info:
                        return image.info[key]

                return str(image.info)

            except Exception as e:
                return f"Error extracting metadata: {str(e)}"

        with gr.Row():
            with gr.Column():
                image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])

            with gr.Column():
                result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99)

                image_metadata.change(
                    fn=extract_exif_data,
                    inputs=[image_metadata],
                    outputs=[result_metadata],
                )

    description_ui()
    gr.LoginButton()
    gr.DuplicateButton(value="Duplicate Space for private use (This demo does not work on CPU. Requires GPU Space)")

app.queue()
app.launch(ssr_mode=False)