File size: 23,454 Bytes
d34ac72
 
 
 
 
 
 
 
 
 
cd39c08
 
 
 
 
 
 
 
 
d34ac72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd39c08
 
09fa6ac
b397bfd
d34ac72
cd39c08
 
 
 
 
d34ac72
 
 
cd39c08
 
 
 
 
 
d34ac72
 
 
 
 
 
 
 
cd39c08
09fa6ac
d34ac72
 
 
 
 
 
 
 
 
 
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d34ac72
cd39c08
 
d34ac72
cd39c08
 
 
 
 
d34ac72
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d34ac72
 
 
 
 
 
 
 
 
 
 
cd39c08
d34ac72
 
 
 
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d34ac72
 
d6802e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline
import copy
import random
import time
from mod import (models, clear_cache, get_repo_safetensors, change_base_model,
                 description_ui, num_loras, compose_lora_json, is_valid_lora, fuse_loras, get_trigger_word)
from flux import (search_civitai_lora, select_civitai_lora, search_civitai_lora_json,
                  download_my_lora, get_all_lora_tupled_list, apply_lora_prompt,
                  update_loras)
from tagger.tagger import predict_tags_wd, compose_prompt_to_copy
from tagger.fl2cog import predict_tags_fl2_cog
from tagger.fl2flux import predict_tags_fl2_flux


# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
    loras = json.load(f)

# Initialize the base model
base_model = models[0]
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)

MAX_SEED = 2**32-1

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")


def update_selection(evt: gr.SelectData, width, height):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
    if "aspect" in selected_lora:
        if selected_lora["aspect"] == "portrait":
            width = 768
            height = 1024
        elif selected_lora["aspect"] == "landscape":
            width = 1024
            height = 768
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index,
        width,
        height,
    )

@spaces.GPU(duration=70)
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
    pipe.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    
    with calculateDuration("Generating image"):
        # Generate image
        image = pipe(
            prompt=f"{prompt} {trigger_word}",
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            width=width,
            height=height,
            generator=generator,
            joint_attention_kwargs={"scale": lora_scale},
        ).images[0]
    return image

def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,

              lora_scale, lora_json, progress=gr.Progress(track_tqdm=True)):
    if selected_index is None and not is_valid_lora(lora_json):
        gr.Info("LoRA isn't selected.")
    #    raise gr.Error("You must select a LoRA before proceeding.")

    if is_valid_lora(lora_json):
        with calculateDuration("Loading LoRA weights"):
            fuse_loras(pipe, lora_json)
            trigger_word = get_trigger_word(lora_json)
    elif selected_index is not None:
        selected_lora = loras[selected_index]
        lora_path = selected_lora["repo"]
        trigger_word = selected_lora["trigger_word"]
        # Load LoRA weights
        with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
            if "weights" in selected_lora:
                pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
            else:
                pipe.load_lora_weights(lora_path)
        
    # Set random seed for reproducibility
    with calculateDuration("Randomizing seed"):
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
    
    image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress)
    pipe.to("cpu")
    if selected_index is not None or is_valid_lora(lora_json): pipe.unload_lora_weights()
    clear_cache()
    return image, seed  

run_lora.zerogpu = True

css = '''

#gen_btn{height: 100%}

#title{text-align: center}

#title h1{font-size: 3em; display:inline-flex; align-items:center}

#title img{width: 100px; margin-right: 0.5em}

#gallery .grid-wrap{height: 10vh}

'''
with gr.Blocks(theme=gr.themes.Soft(), fill_width=True, css=css) as app:
    with gr.Tab("FLUX LoRA the Explorer"):
        title = gr.HTML(
            """<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA">FLUX LoRA the Explorer Mod</h1>""",
            elem_id="title",
        )
        selected_index = gr.State(None)
        with gr.Row():
            with gr.Column(scale=3):
                with gr.Group():
                    with gr.Accordion("Generate Prompt from Image", open=False):
                        tagger_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
                        with gr.Accordion(label="Advanced options", open=False):
                            tagger_general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
                            tagger_character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
                            neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="", visible=False)
                            v2_character = gr.Textbox(label="Character", placeholder="hatsune miku", scale=2, visible=False)
                            v2_series = gr.Textbox(label="Series", placeholder="vocaloid", scale=2, visible=False)
                            v2_copy = gr.Button(value="Copy to clipboard", size="sm", interactive=False, visible=False)
                        tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use CogFlorence-2.1-Large", "Use Florence-2-Flux"], label="Algorithms", value=["Use WD Tagger"])
                        tagger_generate_from_image = gr.Button(value="Generate Prompt from Image")
                    prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
            with gr.Column(scale=1, elem_id="gen_column"):
                generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
        with gr.Row():
            with gr.Column(scale=3):
                selected_info = gr.Markdown("")
                gallery = gr.Gallery(
                    [(item["image"], item["title"]) for item in loras],
                    label="LoRA Gallery",
                    allow_preview=False,
                    columns=3,
                    elem_id="gallery"
                )
                
            with gr.Column(scale=4):
                result = gr.Image(label="Generated Image")

        with gr.Row():
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Column():
                    with gr.Row():
                        model_name = gr.Dropdown(label="Base Model", choices=models, value=models[0], allow_custom_value=True)

                    with gr.Row():
                        cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
                        steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
                    
                    with gr.Row():
                        width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                        height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
                    
                    with gr.Row():
                        randomize_seed = gr.Checkbox(True, label="Randomize seed")
                        seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                        lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.95)

                    with gr.Column():
                        lora_repo_json = gr.JSON(value=[{}] * num_loras, visible=False)
                        lora_repo = [None] * num_loras
                        lora_weights = [None] * num_loras
                        lora_trigger = [None] * num_loras
                        lora_wt = [None] * num_loras
                        lora_info = [None] * num_loras
                        lora_copy = [None] * num_loras
                        lora_md = [None] * num_loras
                        lora_num = [None] * num_loras
                        for i in range(num_loras):
                            with gr.Group():
                                with gr.Row():
                                    lora_repo[i] = gr.Dropdown(label=f"LoRA {int(i+1)} Repo", choices=get_all_lora_tupled_list(), info="Input LoRA Repo ID", value="", allow_custom_value=True)
                                    lora_weights[i] = gr.Dropdown(label=f"LoRA {int(i+1)} Filename", choices=[], info="Optional", value="", allow_custom_value=True)
                                    lora_trigger[i] = gr.Textbox(label=f"LoRA {int(i+1)} Trigger Prompt", value="")
                                    lora_wt[i] = gr.Slider(label=f"LoRA {int(i+1)} Scale", minimum=-2, maximum=2, step=0.01, value=1.00)
                                with gr.Row():
                                    lora_info[i] = gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
                                    lora_copy[i] = gr.Button(value="Copy example to prompt", visible=False)
                                    lora_md[i] = gr.Markdown(value="", visible=False)
                                    lora_num[i] = gr.Number(i, visible=False)
                        with gr.Accordion("From URL", open=True, visible=True):
                            with gr.Row():
                                lora_search_civitai_query = gr.Textbox(label="Query", placeholder="flux", lines=1)
                                lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=["Flux.1 D", "Flux.1 S"], value=["Flux.1 D", "Flux.1 S"])
                                lora_search_civitai_submit = gr.Button("Search on Civitai")
                            lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
                            lora_search_civitai_json = gr.JSON(value={}, visible=False)
                            lora_search_civitai_desc = gr.Markdown(value="", visible=False)
                            lora_download_url = gr.Textbox(label="URL", placeholder="http://...my_lora_url.safetensors", lines=1)
                            lora_download = gr.Button("Get and set LoRA")

    gallery.select(
        update_selection,
        inputs=[width, height],
        outputs=[prompt, selected_info, selected_index, width, height]
    )

    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_lora,
        inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
                 lora_scale, lora_repo_json], # 
        outputs=[result, seed]
    )

    model_name.change(change_base_model, [model_name], None)

    gr.on(
        triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit],
        fn=search_civitai_lora,
        inputs=[lora_search_civitai_query, lora_search_civitai_basemodel],
        outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query],
        scroll_to_output=True,
        queue=True,
        show_api=False,
    )
    lora_search_civitai_json.change(search_civitai_lora_json, [lora_search_civitai_query, lora_search_civitai_basemodel], [lora_search_civitai_json], queue=True, show_api=True)  # fn for api
    lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
    gr.on(
        triggers=[lora_download.click, lora_download_url.submit],
        fn=download_my_lora,
        inputs=[lora_download_url, lora_repo[0]],
        outputs=[lora_repo[0]],
        scroll_to_output=True,
        queue=True,
        show_api=False,
    )

    for i, l in enumerate(lora_repo):
        gr.on(
            triggers=[lora_repo[i].change, lora_wt[i].change],
            fn=update_loras,
            inputs=[prompt, lora_repo[i], lora_wt[i]],
            outputs=[prompt, lora_repo[i], lora_wt[i], lora_info[i], lora_copy[i], lora_md[i]],
            queue=False,
            trigger_mode="once",
            show_api=False,
        ).success(get_repo_safetensors, [lora_repo[i]], [lora_weights[i]], queue=False, show_api=False
        ).success(apply_lora_prompt, [lora_info[i]], [lora_trigger[i]], queue=False, show_api=False
        ).success(compose_lora_json, [lora_repo_json, lora_num[i], lora_repo[i], lora_wt[i], lora_weights[i], lora_trigger[i]], [lora_repo_json], queue=False, show_api=False)

    tagger_generate_from_image.click(
            lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
    ).success(
        predict_tags_wd,
        [tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
        [v2_series, v2_character, prompt, v2_copy],
        show_api=False,
    ).success(
        predict_tags_fl2_flux, [tagger_image, prompt, tagger_algorithms], [prompt], show_api=False,
    ).success(
        predict_tags_fl2_cog, [tagger_image, prompt, tagger_algorithms], [prompt], show_api=False,
    ).success(
        compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False,
    )

    with gr.Tab("FLUX Prompt Generator"):
        from prompt import (PromptGenerator, HuggingFaceInferenceNode, florence_caption,
            ARTFORM, PHOTO_TYPE, BODY_TYPES, DEFAULT_TAGS, ROLES, HAIRSTYLES, ADDITIONAL_DETAILS,
            PHOTOGRAPHY_STYLES, DEVICE, PHOTOGRAPHER, ARTIST, DIGITAL_ARTFORM, PLACE,
            LIGHTING, CLOTHING, COMPOSITION, POSE, BACKGROUND, pg_title)
        
        prompt_generator = PromptGenerator()
        huggingface_node = HuggingFaceInferenceNode()

        gr.HTML(pg_title)

        with gr.Row():
            with gr.Column(scale=2):
                with gr.Accordion("Basic Settings"):
                    pg_seed = gr.Slider(0, 30000, label='Seed', step=1, value=random.randint(0,30000))
                    pg_custom = gr.Textbox(label="Custom Input Prompt (optional)")
                    pg_subject = gr.Textbox(label="Subject (optional)")
                    
                    # Add the radio button for global option selection
                    pg_global_option = gr.Radio(
                        ["Disabled", "Random", "No Figure Rand"],
                        label="Set all options to:",
                        value="Disabled"
                    )
                
                with gr.Accordion("Artform and Photo Type", open=False):
                    pg_artform = gr.Dropdown(["disabled", "random"] + ARTFORM, label="Artform", value="disabled")
                    pg_photo_type = gr.Dropdown(["disabled", "random"] + PHOTO_TYPE, label="Photo Type", value="disabled")
            
                with gr.Accordion("Character Details", open=False):
                    pg_body_types = gr.Dropdown(["disabled", "random"] + BODY_TYPES, label="Body Types", value="disabled")
                    pg_default_tags = gr.Dropdown(["disabled", "random"] + DEFAULT_TAGS, label="Default Tags", value="disabled")
                    pg_roles = gr.Dropdown(["disabled", "random"] + ROLES, label="Roles", value="disabled")
                    pg_hairstyles = gr.Dropdown(["disabled", "random"] + HAIRSTYLES, label="Hairstyles", value="disabled")
                    pg_clothing = gr.Dropdown(["disabled", "random"] + CLOTHING, label="Clothing", value="disabled")
            
                with gr.Accordion("Scene Details", open=False):
                    pg_place = gr.Dropdown(["disabled", "random"] + PLACE, label="Place", value="disabled")
                    pg_lighting = gr.Dropdown(["disabled", "random"] + LIGHTING, label="Lighting", value="disabled")
                    pg_composition = gr.Dropdown(["disabled", "random"] + COMPOSITION, label="Composition", value="disabled")
                    pg_pose = gr.Dropdown(["disabled", "random"] + POSE, label="Pose", value="disabled")
                    pg_background = gr.Dropdown(["disabled", "random"] + BACKGROUND, label="Background", value="disabled")
            
                with gr.Accordion("Style and Artist", open=False):
                    pg_additional_details = gr.Dropdown(["disabled", "random"] + ADDITIONAL_DETAILS, label="Additional Details", value="disabled")
                    pg_photography_styles = gr.Dropdown(["disabled", "random"] + PHOTOGRAPHY_STYLES, label="Photography Styles", value="disabled")
                    pg_device = gr.Dropdown(["disabled", "random"] + DEVICE, label="Device", value="disabled")
                    pg_photographer = gr.Dropdown(["disabled", "random"] + PHOTOGRAPHER, label="Photographer", value="disabled")
                    pg_artist = gr.Dropdown(["disabled", "random"] + ARTIST, label="Artist", value="disabled")
                    pg_digital_artform = gr.Dropdown(["disabled", "random"] + DIGITAL_ARTFORM, label="Digital Artform", value="disabled")
                
                pg_generate_button = gr.Button("Generate Prompt")

            with gr.Column(scale=2):
                with gr.Accordion("Image and Caption", open=False):
                    pg_input_image = gr.Image(label="Input Image (optional)")
                    pg_caption_output = gr.Textbox(label="Generated Caption", lines=3)
                    pg_create_caption_button = gr.Button("Create Caption")
                    pg_add_caption_button = gr.Button("Add Caption to Prompt")

                with gr.Accordion("Prompt Generation", open=True):
                    pg_output = gr.Textbox(label="Generated Prompt / Input Text", lines=4)
                    pg_t5xxl_output = gr.Textbox(label="T5XXL Output", visible=True)
                    pg_clip_l_output = gr.Textbox(label="CLIP L Output", visible=True)
                    pg_clip_g_output = gr.Textbox(label="CLIP G Output", visible=True)
            
            with gr.Column(scale=2):
                with gr.Accordion("Prompt Generation with LLM", open=False):
                    pg_model = gr.Dropdown(["Mixtral", "Mistral", "Llama 3", "Mistral-Nemo"], label="Model", value="Llama 3")
                    pg_happy_talk = gr.Checkbox(label="Happy Talk", value=True)
                    pg_compress = gr.Checkbox(label="Compress", value=True)
                    pg_compression_level = gr.Radio(["soft", "medium", "hard"], label="Compression Level", value="hard")
                    pg_poster = gr.Checkbox(label="Poster", value=False)
                    pg_custom_base_prompt = gr.Textbox(label="Custom Base Prompt", lines=5)
                pg_generate_text_button = gr.Button("Generate Prompt with LLM")
                pg_text_output = gr.Textbox(label="Generated Text", lines=10)

    description_ui()

    def create_caption(image):
        if image is not None:
            return florence_caption(image)
        return ""

    pg_create_caption_button.click(
        create_caption,
        inputs=[pg_input_image],
        outputs=[pg_caption_output]
    )

    pg_generate_button.click(
        prompt_generator.generate_prompt,
        inputs=[pg_seed, pg_custom, pg_subject, pg_artform, pg_photo_type, pg_body_types,
                pg_default_tags, pg_roles, pg_hairstyles,
                pg_additional_details, pg_photography_styles, pg_device, pg_photographer,
                pg_artist, pg_digital_artform,
                pg_place, pg_lighting, pg_clothing, pg_composition, pg_pose, pg_background],
        outputs=[pg_output, gr.Number(visible=False), pg_t5xxl_output, pg_clip_l_output, pg_clip_g_output]
    )

    pg_add_caption_button.click(
        prompt_generator.add_caption_to_prompt,
        inputs=[pg_output, pg_caption_output],
        outputs=[pg_output]
    )

    pg_generate_text_button.click(
        huggingface_node.generate,
        inputs=[pg_model, pg_output, pg_happy_talk, pg_compress, pg_compression_level,
                pg_poster, pg_custom_base_prompt],
        outputs=pg_text_output
    )

    def update_all_options(choice):
        updates = {}
        if choice == "Disabled":
            for dropdown in [
                pg_artform, pg_photo_type, pg_body_types, pg_default_tags,
                pg_roles, pg_hairstyles, pg_clothing,
                pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details,
                pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform
            ]:
                updates[dropdown] = gr.update(value="disabled")
        elif choice == "Random":
            for dropdown in [
                pg_artform, pg_photo_type, pg_body_types, pg_default_tags,
                pg_roles, pg_hairstyles, pg_clothing,
                pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details,
                pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform
            ]:
                updates[dropdown] = gr.update(value="random")
        else:  # No Figure Random
            for dropdown in [pg_photo_type, pg_body_types, pg_default_tags,
                                pg_roles, pg_hairstyles, pg_clothing, pg_pose, pg_additional_details]:
                updates[dropdown] = gr.update(value="disabled")
            for dropdown in [pg_artform, pg_place, pg_lighting, pg_composition,
                                pg_background, pg_photography_styles, pg_device, pg_photographer,
                                pg_artist, pg_digital_artform]:
                updates[dropdown] = gr.update(value="random")
        return updates
    
    pg_global_option.change(
        update_all_options,
        inputs=[pg_global_option],
        outputs=[
            pg_artform, pg_photo_type, pg_body_types, pg_default_tags,
            pg_roles, pg_hairstyles, pg_clothing,
            pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details,
            pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform
        ]
    )

app.queue()
app.launch()