import spaces import json import gradio as gr from huggingface_hub import HfApi import os from pathlib import Path from PIL import Image from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2, HF_MODEL_USER_EX, HF_MODEL_USER_LIKES, DIFFUSERS_FORMAT_LORAS, directory_loras, hf_read_token, HF_TOKEN, CIVITAI_API_KEY) MODEL_TYPE_DICT = { "diffusers:StableDiffusionPipeline": "SD 1.5", "diffusers:StableDiffusionXLPipeline": "SDXL", "diffusers:FluxPipeline": "FLUX", } def get_user_agent(): return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0' def to_list(s): return [x.strip() for x in s.split(",") if not s == ""] def list_uniq(l): return sorted(set(l), key=l.index) def list_sub(a, b): return [e for e in a if e not in b] def is_repo_name(s): import re return re.fullmatch(r'^[^/]+?/[^/]+?$', s) from translatepy import Translator translator = Translator() def translate_to_en(input: str): try: output = str(translator.translate(input, 'English')) except Exception as e: output = input print(e) return output def get_local_model_list(dir_path): model_list = [] valid_extensions = ('.ckpt', '.pt', '.pth', '.safetensors', '.bin') for file in Path(dir_path).glob("*"): if file.suffix in valid_extensions: file_path = str(Path(f"{dir_path}/{file.name}")) model_list.append(file_path) return model_list def download_things(directory, url, hf_token="", civitai_api_key=""): url = url.strip() if "drive.google.com" in url: original_dir = os.getcwd() os.chdir(directory) os.system(f"gdown --fuzzy {url}") os.chdir(original_dir) elif "huggingface.co" in url: url = url.replace("?download=true", "") # url = urllib.parse.quote(url, safe=':/') # fix encoding if "/blob/" in url: url = url.replace("/blob/", "/resolve/") user_header = f'"Authorization: Bearer {hf_token}"' if hf_token: os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}") else: os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}") elif "civitai.com" in url: if "?" in url: url = url.split("?")[0] if civitai_api_key: user_header = f'"Authorization: Bearer {civitai_api_key}"' os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 -d {directory} {url}") else: print("\033[91mYou need an API key to download Civitai models.\033[0m") else: os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}") def escape_lora_basename(basename: str): return basename.replace(".", "_").replace(" ", "_").replace(",", "") def to_lora_key(path: str): return escape_lora_basename(Path(path).stem) def to_lora_path(key: str): if Path(key).is_file(): return key path = Path(f"{directory_loras}/{escape_lora_basename(key)}.safetensors") return str(path) def safe_float(input): output = 1.0 try: output = float(input) except Exception: output = 1.0 return output def save_images(images: list[Image.Image], metadatas: list[str]): from PIL import PngImagePlugin import uuid try: output_images = [] for image, metadata in zip(images, metadatas): info = PngImagePlugin.PngInfo() info.add_text("parameters", metadata) savefile = f"{str(uuid.uuid4())}.png" image.save(savefile, "PNG", pnginfo=info) output_images.append(str(Path(savefile).resolve())) return output_images except Exception as e: print(f"Failed to save image file: {e}") raise Exception(f"Failed to save image file:") from e def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)): from datetime import datetime, timezone, timedelta progress(0, desc="Updating gallery...") dt_now = datetime.now(timezone(timedelta(hours=9))) basename = dt_now.strftime('%Y%m%d_%H%M%S_') i = 1 if not images: return images output_images = [] output_paths = [] for image in images: filename = basename + str(i) + ".png" i += 1 oldpath = Path(image[0]) newpath = oldpath try: if oldpath.exists(): newpath = oldpath.resolve().rename(Path(filename).resolve()) except Exception as e: print(e) finally: output_paths.append(str(newpath)) output_images.append((str(newpath), str(filename))) progress(1, desc="Gallery updated.") return gr.update(value=output_images), gr.update(value=output_paths), gr.update(visible=True) def download_private_repo(repo_id, dir_path, is_replace): from huggingface_hub import snapshot_download if not hf_read_token: return try: snapshot_download(repo_id=repo_id, local_dir=dir_path, allow_patterns=['*.ckpt', '*.pt', '*.pth', '*.safetensors', '*.bin'], use_auth_token=hf_read_token) except Exception as e: print(f"Error: Failed to download {repo_id}.") print(e) return if is_replace: for file in Path(dir_path).glob("*"): if file.exists() and "." in file.stem or " " in file.stem and file.suffix in ['.ckpt', '.pt', '.pth', '.safetensors', '.bin']: newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') file.resolve().rename(newpath.resolve()) private_model_path_repo_dict = {} # {"local filepath": "huggingface repo_id", ...} def get_private_model_list(repo_id, dir_path): global private_model_path_repo_dict api = HfApi() if not hf_read_token: return [] try: files = api.list_repo_files(repo_id, token=hf_read_token) except Exception as e: print(f"Error: Failed to list {repo_id}.") print(e) return [] model_list = [] for file in files: path = Path(f"{dir_path}/{file}") if path.suffix in ['.ckpt', '.pt', '.pth', '.safetensors', '.bin']: model_list.append(str(path)) for model in model_list: private_model_path_repo_dict[model] = repo_id return model_list def download_private_file(repo_id, path, is_replace): from huggingface_hub import hf_hub_download file = Path(path) newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') if is_replace else file if not hf_read_token or newpath.exists(): return filename = file.name dirname = file.parent.name try: hf_hub_download(repo_id=repo_id, filename=filename, local_dir=dirname, use_auth_token=hf_read_token) except Exception as e: print(f"Error: Failed to download {filename}.") print(e) return if is_replace: file.resolve().rename(newpath.resolve()) def download_private_file_from_somewhere(path, is_replace): if not path in private_model_path_repo_dict.keys(): return repo_id = private_model_path_repo_dict.get(path, None) download_private_file(repo_id, path, is_replace) model_id_list = [] def get_model_id_list(): global model_id_list if len(model_id_list) != 0: return model_id_list api = HfApi() model_ids = [] try: models_likes = [] for author in HF_MODEL_USER_LIKES: models_likes.extend(api.list_models(author=author, task="text-to-image", cardData=True, sort="likes")) models_ex = [] for author in HF_MODEL_USER_EX: models_ex = api.list_models(author=author, task="text-to-image", cardData=True, sort="last_modified") except Exception as e: print(f"Error: Failed to list {author}'s models.") print(e) return model_ids for model in models_likes: model_ids.append(model.id) if not model.private else "" anime_models = [] real_models = [] anime_models_flux = [] real_models_flux = [] for model in models_ex: if not model.private and not model.gated: if "diffusers:FluxPipeline" in model.tags: anime_models_flux.append(model.id) if "anime" in model.tags else real_models_flux.append(model.id) else: anime_models.append(model.id) if "anime" in model.tags else real_models.append(model.id) model_ids.extend(anime_models) model_ids.extend(real_models) model_ids.extend(anime_models_flux) model_ids.extend(real_models_flux) model_id_list = model_ids.copy() return model_ids model_id_list = get_model_id_list() def get_t2i_model_info(repo_id: str): api = HfApi(token=HF_TOKEN) try: if not is_repo_name(repo_id): return "" model = api.model_info(repo_id=repo_id, timeout=5.0) except Exception as e: print(f"Error: Failed to get {repo_id}'s info.") print(e) return "" if model.private or model.gated: return "" tags = model.tags info = [] url = f"https://huggingface.co/{repo_id}/" if not 'diffusers' in tags: return "" for k, v in MODEL_TYPE_DICT.items(): if k in tags: info.append(v) if model.card_data and model.card_data.tags: info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl'])) info.append(f"DLs: {model.downloads}") info.append(f"likes: {model.likes}") info.append(model.last_modified.strftime("lastmod: %Y-%m-%d")) md = f"Model Info: {', '.join(info)}, [Model Repo]({url})" return gr.update(value=md) def get_tupled_model_list(model_list): if not model_list: return [] tupled_list = [] for repo_id in model_list: api = HfApi() try: if not api.repo_exists(repo_id): continue model = api.model_info(repo_id=repo_id) except Exception as e: print(e) continue if model.private or model.gated: continue tags = model.tags info = [] if not 'diffusers' in tags: continue for k, v in MODEL_TYPE_DICT.items(): if k in tags: info.append(v) if model.card_data and model.card_data.tags: info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl'])) if "pony" in info: info.remove("pony") name = f"{repo_id} (Pony🐴, {', '.join(info)})" else: name = f"{repo_id} ({', '.join(info)})" tupled_list.append((name, repo_id)) return tupled_list private_lora_dict = {} try: with open('lora_dict.json', encoding='utf-8') as f: d = json.load(f) for k, v in d.items(): private_lora_dict[escape_lora_basename(k)] = v except Exception as e: print(e) loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy() civitai_not_exists_list = [] loras_url_to_path_dict = {} # {"URL to download": "local filepath", ...} civitai_lora_last_results = {} # {"URL to download": {search results}, ...} all_lora_list = [] private_lora_model_list = [] def get_private_lora_model_lists(): global private_lora_model_list if len(private_lora_model_list) != 0: return private_lora_model_list models1 = [] models2 = [] for repo in HF_LORA_PRIVATE_REPOS1: models1.extend(get_private_model_list(repo, directory_loras)) for repo in HF_LORA_PRIVATE_REPOS2: models2.extend(get_private_model_list(repo, directory_loras)) models = list_uniq(models1 + sorted(models2)) private_lora_model_list = models.copy() return models private_lora_model_list = get_private_lora_model_lists() def get_civitai_info(path): global civitai_not_exists_list import requests from urllib3.util import Retry from requests.adapters import HTTPAdapter if path in set(civitai_not_exists_list): return ["", "", "", "", ""] if not Path(path).exists(): return None user_agent = get_user_agent() headers = {'User-Agent': user_agent, 'content-type': 'application/json'} base_url = 'https://civitai.com/api/v1/model-versions/by-hash/' params = {} session = requests.Session() retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504]) session.mount("https://", HTTPAdapter(max_retries=retries)) import hashlib with open(path, 'rb') as file: file_data = file.read() hash_sha256 = hashlib.sha256(file_data).hexdigest() url = base_url + hash_sha256 try: r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15)) except Exception as e: print(e) return ["", "", "", "", ""] if not r.ok: return None json = r.json() if not 'baseModel' in json: civitai_not_exists_list.append(path) return ["", "", "", "", ""] items = [] items.append(" / ".join(json['trainedWords'])) items.append(json['baseModel']) items.append(json['model']['name']) items.append(f"https://civitai.com/models/{json['modelId']}") items.append(json['images'][0]['url']) return items def get_lora_model_list(): loras = list_uniq(get_private_lora_model_lists() + get_local_model_list(directory_loras) + DIFFUSERS_FORMAT_LORAS) loras.insert(0, "None") loras.insert(0, "") return loras def get_all_lora_list(): global all_lora_list loras = get_lora_model_list() all_lora_list = loras.copy() return loras def get_all_lora_tupled_list(): global loras_dict models = get_all_lora_list() if not models: return [] tupled_list = [] for model in models: #if not model: continue # to avoid GUI-related bug basename = Path(model).stem key = to_lora_key(model) items = None if key in loras_dict.keys(): items = loras_dict.get(key, None) else: items = get_civitai_info(model) if items != None: loras_dict[key] = items name = basename value = model if items and items[2] != "": if items[1] == "Pony": name = f"{basename} (for {items[1]}🐴, {items[2]})" else: name = f"{basename} (for {items[1]}, {items[2]})" tupled_list.append((name, value)) return tupled_list def update_lora_dict(path): global loras_dict key = escape_lora_basename(Path(path).stem) if key in loras_dict.keys(): return items = get_civitai_info(path) if items == None: return loras_dict[key] = items def download_lora(dl_urls: str): global loras_url_to_path_dict dl_path = "" before = get_local_model_list(directory_loras) urls = [] for url in [url.strip() for url in dl_urls.split(',')]: local_path = f"{directory_loras}/{url.split('/')[-1]}" if not Path(local_path).exists(): download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY) urls.append(url) after = get_local_model_list(directory_loras) new_files = list_sub(after, before) i = 0 for file in new_files: path = Path(file) if path.exists(): new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}') path.resolve().rename(new_path.resolve()) loras_url_to_path_dict[urls[i]] = str(new_path) update_lora_dict(str(new_path)) dl_path = str(new_path) i += 1 return dl_path def copy_lora(path: str, new_path: str): import shutil if path == new_path: return new_path cpath = Path(path) npath = Path(new_path) if cpath.exists(): try: shutil.copy(str(cpath.resolve()), str(npath.resolve())) except Exception as e: print(e) return None update_lora_dict(str(npath)) return new_path else: return None def download_my_lora(dl_urls: str, lora1: str, lora2: str, lora3: str, lora4: str, lora5: str): path = download_lora(dl_urls) if path: if not lora1 or lora1 == "None": lora1 = path elif not lora2 or lora2 == "None": lora2 = path elif not lora3 or lora3 == "None": lora3 = path elif not lora4 or lora4 == "None": lora4 = path elif not lora5 or lora5 == "None": lora5 = path choices = get_all_lora_tupled_list() return gr.update(value=lora1, choices=choices), gr.update(value=lora2, choices=choices), gr.update(value=lora3, choices=choices),\ gr.update(value=lora4, choices=choices), gr.update(value=lora5, choices=choices) def get_valid_lora_name(query: str, model_name: str): path = "None" if not query or query == "None": return "None" if to_lora_key(query) in loras_dict.keys(): return query if query in loras_url_to_path_dict.keys(): path = loras_url_to_path_dict[query] else: path = to_lora_path(query.strip().split('/')[-1]) if Path(path).exists(): return path elif "http" in query: dl_file = download_lora(query) if dl_file and Path(dl_file).exists(): return dl_file else: dl_file = find_similar_lora(query, model_name) if dl_file and Path(dl_file).exists(): return dl_file return "None" def get_valid_lora_path(query: str): path = None if not query or query == "None": return None if to_lora_key(query) in loras_dict.keys(): return query if Path(path).exists(): return path else: return None def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float): import re wt = lora_wt result = re.findall(f'', prompt) if not result: return wt wt = safe_float(result[0][0]) return wt def set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt): import re if not "Classic" in str(prompt_syntax): return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt lora1 = get_valid_lora_name(lora1, model_name) lora2 = get_valid_lora_name(lora2, model_name) lora3 = get_valid_lora_name(lora3, model_name) lora4 = get_valid_lora_name(lora4, model_name) lora5 = get_valid_lora_name(lora5, model_name) if not "', p) if not result: continue key = result[0][0] wt = result[0][1] path = to_lora_path(key) if not key in loras_dict.keys() or not path: path = get_valid_lora_name(path) if not path or path == "None": continue if path in lora_paths: continue elif not on1: lora1 = path lora_paths = [lora1, lora2, lora3, lora4, lora5] lora1_wt = safe_float(wt) on1 = True elif not on2: lora2 = path lora_paths = [lora1, lora2, lora3, lora4, lora5] lora2_wt = safe_float(wt) on2 = True elif not on3: lora3 = path lora_paths = [lora1, lora2, lora3, lora4, lora5] lora3_wt = safe_float(wt) on3 = True elif not on4: lora4 = path lora_paths = [lora1, lora2, lora3, lora4, lora5] lora4_wt = safe_float(wt) on4, label4, tag4, md4 = get_lora_info(lora4) elif not on5: lora5 = path lora_paths = [lora1, lora2, lora3, lora4, lora5] lora5_wt = safe_float(wt) on5 = True return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt def get_lora_info(lora_path: str): is_valid = False tag = "" label = "" md = "None" if not lora_path or lora_path == "None": print("LoRA file not found.") return is_valid, label, tag, md path = Path(lora_path) new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}') if not to_lora_key(str(new_path)) in loras_dict.keys() and str(path) not in set(get_all_lora_list()): print("LoRA file is not registered.") return tag, label, tag, md if not new_path.exists(): download_private_file_from_somewhere(str(path), True) basename = new_path.stem label = f'Name: {basename}' items = loras_dict.get(basename, None) if items == None: items = get_civitai_info(str(new_path)) if items != None: loras_dict[basename] = items if items and items[2] != "": tag = items[0] label = f'Name: {basename}' if items[1] == "Pony": label = f'Name: {basename} (for Pony🐴)' if items[4]: md = f'thumbnail
[LoRA Model URL]({items[3]})' elif items[3]: md = f'[LoRA Model URL]({items[3]})' is_valid = True return is_valid, label, tag, md def normalize_prompt_list(tags: list[str]): prompts = [] for tag in tags: tag = str(tag).strip() if tag: prompts.append(tag) return prompts def apply_lora_prompt(prompt: str = "", lora_info: str = ""): if lora_info == "None": return gr.update(value=prompt) tags = prompt.split(",") if prompt else [] prompts = normalize_prompt_list(tags) lora_tag = lora_info.replace("/",",") lora_tags = lora_tag.split(",") if str(lora_info) != "None" else [] lora_prompts = normalize_prompt_list(lora_tags) empty = [""] prompt = ", ".join(list_uniq(prompts + lora_prompts) + empty) return gr.update(value=prompt) def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt): import re on1, label1, tag1, md1 = get_lora_info(lora1) on2, label2, tag2, md2 = get_lora_info(lora2) on3, label3, tag3, md3 = get_lora_info(lora3) on4, label4, tag4, md4 = get_lora_info(lora4) on5, label5, tag5, md5 = get_lora_info(lora5) lora_paths = [lora1, lora2, lora3, lora4, lora5] output_prompt = prompt if "Classic" in str(prompt_syntax): prompts = prompt.split(",") if prompt else [] output_prompts = [] for p in prompts: p = str(p).strip() if "', p) if not result: continue key = result[0][0] wt = result[0][1] path = to_lora_path(key) if not key in loras_dict.keys() or not path: continue if path in lora_paths: output_prompts.append(f"") elif p: output_prompts.append(p) lora_prompts = [] if on1: lora_prompts.append(f"") if on2: lora_prompts.append(f"") if on3: lora_prompts.append(f"") if on4: lora_prompts.append(f"") if on5: lora_prompts.append(f"") output_prompt = ", ".join(list_uniq(output_prompts + lora_prompts + [""])) choices = get_all_lora_tupled_list() return gr.update(value=output_prompt), gr.update(value=lora1, choices=choices), gr.update(value=lora1_wt),\ gr.update(value=tag1, label=label1, visible=on1), gr.update(visible=on1), gr.update(value=md1, visible=on1),\ gr.update(value=lora2, choices=choices), gr.update(value=lora2_wt),\ gr.update(value=tag2, label=label2, visible=on2), gr.update(visible=on2), gr.update(value=md2, visible=on2),\ gr.update(value=lora3, choices=choices), gr.update(value=lora3_wt),\ gr.update(value=tag3, label=label3, visible=on3), gr.update(visible=on3), gr.update(value=md3, visible=on3),\ gr.update(value=lora4, choices=choices), gr.update(value=lora4_wt),\ gr.update(value=tag4, label=label4, visible=on4), gr.update(visible=on4), gr.update(value=md4, visible=on4),\ gr.update(value=lora5, choices=choices), gr.update(value=lora5_wt),\ gr.update(value=tag5, label=label5, visible=on5), gr.update(visible=on5), gr.update(value=md5, visible=on5) def get_my_lora(link_url): from pathlib import Path before = get_local_model_list(directory_loras) for url in [url.strip() for url in link_url.split(',')]: if not Path(f"{directory_loras}/{url.split('/')[-1]}").exists(): download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY) after = get_local_model_list(directory_loras) new_files = list_sub(after, before) for file in new_files: path = Path(file) if path.exists(): new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}') path.resolve().rename(new_path.resolve()) update_lora_dict(str(new_path)) new_lora_model_list = get_lora_model_list() new_lora_tupled_list = get_all_lora_tupled_list() return gr.update( choices=new_lora_tupled_list, value=new_lora_model_list[-1] ), gr.update( choices=new_lora_tupled_list ), gr.update( choices=new_lora_tupled_list ), gr.update( choices=new_lora_tupled_list ), gr.update( choices=new_lora_tupled_list ) def upload_file_lora(files, progress=gr.Progress(track_tqdm=True)): progress(0, desc="Uploading...") file_paths = [file.name for file in files] progress(1, desc="Uploaded.") return gr.update(value=file_paths, visible=True), gr.update(visible=True) def move_file_lora(filepaths): import shutil for file in filepaths: path = Path(shutil.move(Path(file).resolve(), Path(f"./{directory_loras}").resolve())) newpath = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}') path.resolve().rename(newpath.resolve()) update_lora_dict(str(newpath)) new_lora_model_list = get_lora_model_list() new_lora_tupled_list = get_all_lora_tupled_list() return gr.update( choices=new_lora_tupled_list, value=new_lora_model_list[-1] ), gr.update( choices=new_lora_tupled_list ), gr.update( choices=new_lora_tupled_list ), gr.update( choices=new_lora_tupled_list ), gr.update( choices=new_lora_tupled_list ) def get_civitai_info(path): global civitai_not_exists_list, loras_url_to_path_dict import requests from requests.adapters import HTTPAdapter from urllib3.util import Retry default = ["", "", "", "", ""] if path in set(civitai_not_exists_list): return default if not Path(path).exists(): return None user_agent = get_user_agent() headers = {'User-Agent': user_agent, 'content-type': 'application/json'} base_url = 'https://civitai.com/api/v1/model-versions/by-hash/' params = {} session = requests.Session() retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504]) session.mount("https://", HTTPAdapter(max_retries=retries)) import hashlib with open(path, 'rb') as file: file_data = file.read() hash_sha256 = hashlib.sha256(file_data).hexdigest() url = base_url + hash_sha256 try: r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15)) except Exception as e: print(e) return default else: if not r.ok: return None json = r.json() if 'baseModel' not in json: civitai_not_exists_list.append(path) return default items = [] items.append(" / ".join(json['trainedWords'])) # The words (prompts) used to trigger the model items.append(json['baseModel']) # Base model (SDXL1.0, Pony, ...) items.append(json['model']['name']) # The name of the model version items.append(f"https://civitai.com/models/{json['modelId']}") # The repo url for the model items.append(json['images'][0]['url']) # The url for a sample image loras_url_to_path_dict[path] = json['downloadUrl'] # The download url to get the model file for this specific version return items def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1.0"], limit: int = 100, sort: str = "Highest Rated", period: str = "AllTime", tag: str = ""): import requests from requests.adapters import HTTPAdapter from urllib3.util import Retry user_agent = get_user_agent() headers = {'User-Agent': user_agent, 'content-type': 'application/json'} base_url = 'https://civitai.com/api/v1/models' params = {'types': ['LORA'], 'sort': sort, 'period': period, 'limit': limit, 'nsfw': 'true'} if query: params["query"] = query if tag: params["tag"] = tag session = requests.Session() retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504]) session.mount("https://", HTTPAdapter(max_retries=retries)) try: r = session.get(base_url, params=params, headers=headers, stream=True, timeout=(3.0, 30)) except Exception as e: print(e) return None else: if not r.ok: return None json = r.json() if 'items' not in json: return None items = [] for j in json['items']: for model in j['modelVersions']: item = {} if model['baseModel'] not in set(allow_model): continue item['name'] = j['name'] item['creator'] = j['creator']['username'] item['tags'] = j['tags'] item['model_name'] = model['name'] item['base_model'] = model['baseModel'] item['dl_url'] = model['downloadUrl'] item['md'] = f'thumbnail
[LoRA Model URL](https://civitai.com/models/{j["id"]})' items.append(item) return items def search_civitai_lora(query, base_model, sort="Highest Rated", period="AllTime", tag=""): global civitai_lora_last_results items = search_lora_on_civitai(query, base_model, 100, sort, period, tag) if not items: return gr.update(choices=[("", "")], value="", visible=False),\ gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True) civitai_lora_last_results = {} choices = [] for item in items: base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model'] name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})" value = item['dl_url'] choices.append((name, value)) civitai_lora_last_results[value] = item if not choices: return gr.update(choices=[("", "")], value="", visible=False),\ gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True) result = civitai_lora_last_results.get(choices[0][1], "None") md = result['md'] if result else "" return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\ gr.update(visible=True), gr.update(visible=True) def select_civitai_lora(search_result): if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True) result = civitai_lora_last_results.get(search_result, "None") md = result['md'] if result else "" return gr.update(value=search_result), gr.update(value=md, visible=True) LORA_BASE_MODEL_DICT = { "diffusers:StableDiffusionPipeline": ["SD 1.5"], "diffusers:StableDiffusionXLPipeline": ["Pony", "SDXL 1.0"], "diffusers:FluxPipeline": ["Flux.1 D", "Flux.1 S"], } def get_lora_base_model(model_name: str): api = HfApi(token=HF_TOKEN) default = ["Pony", "SDXL 1.0"] try: model = api.model_info(repo_id=model_name, timeout=5.0) tags = model.tags for tag in tags: if tag in LORA_BASE_MODEL_DICT.keys(): return LORA_BASE_MODEL_DICT.get(tag, default) except Exception: return default return default def find_similar_lora(q: str, model_name: str): from rapidfuzz.process import extractOne from rapidfuzz.utils import default_process query = to_lora_key(q) print(f"Finding ...") keys = list(private_lora_dict.keys()) values = [x[2] for x in list(private_lora_dict.values())] s = default_process(query) e1 = extractOne(s, keys + values, processor=default_process, score_cutoff=80.0) key = "" if e1: e = e1[0] if e in set(keys): key = e elif e in set(values): key = keys[values.index(e)] if key: path = to_lora_path(key) new_path = to_lora_path(query) if not Path(path).exists(): if not Path(new_path).exists(): download_private_file_from_somewhere(path, True) if Path(path).exists() and copy_lora(path, new_path): return new_path print(f"Finding on Civitai...") civitai_query = Path(query).stem if Path(query).is_file() else query civitai_query = civitai_query.replace("_", " ").replace("-", " ") base_model = get_lora_base_model(model_name) items = search_lora_on_civitai(civitai_query, base_model, 1) if items: item = items[0] path = download_lora(item['dl_url']) new_path = query if Path(query).is_file() else to_lora_path(query) if path and copy_lora(path, new_path): return new_path return None def change_interface_mode(mode: str): if mode == "Fast": return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\ gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\ gr.update(visible=True), gr.update(value="Fast") elif mode == "Simple": # t2i mode return gr.update(open=True), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\ gr.update(visible=True), gr.update(open=False), gr.update(visible=False), gr.update(open=True),\ gr.update(visible=False), gr.update(value="Standard") elif mode == "LoRA": # t2i LoRA mode return gr.update(open=True), gr.update(visible=True), gr.update(open=True), gr.update(open=False),\ gr.update(visible=True), gr.update(open=True), gr.update(visible=True), gr.update(open=False),\ gr.update(visible=False), gr.update(value="Standard") else: # Standard return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\ gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\ gr.update(visible=True), gr.update(value="Standard") quality_prompt_list = [ { "name": "None", "prompt": "", "negative_prompt": "lowres", }, { "name": "Animagine Common", "prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres", "negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", }, { "name": "Pony Anime Common", "prompt": "source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres", "negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends", }, { "name": "Pony Common", "prompt": "source_anime, score_9, score_8_up, score_7_up", "negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends", }, { "name": "Animagine Standard v3.0", "prompt": "masterpiece, best quality", "negative_prompt": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name", }, { "name": "Animagine Standard v3.1", "prompt": "masterpiece, best quality, very aesthetic, absurdres", "negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", }, { "name": "Animagine Light v3.1", "prompt": "(masterpiece), best quality, very aesthetic, perfect face", "negative_prompt": "(low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn", }, { "name": "Animagine Heavy v3.1", "prompt": "(masterpiece), (best quality), (ultra-detailed), very aesthetic, illustration, disheveled hair, perfect composition, moist skin, intricate details", "negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair, extra digit, fewer digits, cropped, worst quality, low quality, very displeasing", }, ] style_list = [ { "name": "None", "prompt": "", "negative_prompt": "", }, { "name": "Cinematic", "prompt": "cinematic still, emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", "negative_prompt": "cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", }, { "name": "Photographic", "prompt": "cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed", "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", }, { "name": "Anime", "prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed", "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", }, { "name": "Manga", "prompt": "manga style, vibrant, high-energy, detailed, iconic, Japanese comic style", "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", }, { "name": "Digital Art", "prompt": "concept art, digital artwork, illustrative, painterly, matte painting, highly detailed", "negative_prompt": "photo, photorealistic, realism, ugly", }, { "name": "Pixel art", "prompt": "pixel-art, low-res, blocky, pixel art style, 8-bit graphics", "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", }, { "name": "Fantasy art", "prompt": "ethereal fantasy concept art, magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", }, { "name": "Neonpunk", "prompt": "neonpunk style, cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", }, { "name": "3D Model", "prompt": "professional 3d model, octane render, highly detailed, volumetric, dramatic lighting", "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", }, ] optimization_list = { "None": [28, 7., 'Euler a', False, 'None', 1.], "Default": [28, 7., 'Euler a', False, 'None', 1.], "SPO": [28, 7., 'Euler a', True, 'loras/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors', 1.], "DPO": [28, 7., 'Euler a', True, 'loras/sdxl-DPO-LoRA.safetensors', 1.], "DPO Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_dpo_turbo_lora_v1-128dim.safetensors', 1.], "SDXL Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_turbo_lora_v1.safetensors', 1.], "Hyper-SDXL 12step": [12, 5., 'TCD', True, 'loras/Hyper-SDXL-12steps-CFG-lora.safetensors', 1.], "Hyper-SDXL 8step": [8, 5., 'TCD', True, 'loras/Hyper-SDXL-8steps-CFG-lora.safetensors', 1.], "Hyper-SDXL 4step": [4, 0, 'TCD', True, 'loras/Hyper-SDXL-4steps-lora.safetensors', 1.], "Hyper-SDXL 2step": [2, 0, 'TCD', True, 'loras/Hyper-SDXL-2steps-lora.safetensors', 1.], "Hyper-SDXL 1step": [1, 0, 'TCD', True, 'loras/Hyper-SDXL-1steps-lora.safetensors', 1.], "PCM 16step": [16, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_16step_converted.safetensors', 1.], "PCM 8step": [8, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_8step_converted.safetensors', 1.], "PCM 4step": [4, 2., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_4step_converted.safetensors', 1.], "PCM 2step": [2, 1., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_2step_converted.safetensors', 1.], } def set_optimization(opt, steps_gui, cfg_gui, sampler_gui, clip_skip_gui, lora_gui, lora_scale_gui): if not opt in list(optimization_list.keys()): opt = "None" def_steps_gui = 28 def_cfg_gui = 7. steps = optimization_list.get(opt, "None")[0] cfg = optimization_list.get(opt, "None")[1] sampler = optimization_list.get(opt, "None")[2] clip_skip = optimization_list.get(opt, "None")[3] lora = optimization_list.get(opt, "None")[4] lora_scale = optimization_list.get(opt, "None")[5] if opt == "None": steps = max(steps_gui, def_steps_gui) cfg = max(cfg_gui, def_cfg_gui) clip_skip = clip_skip_gui elif opt == "SPO" or opt == "DPO": steps = max(steps_gui, def_steps_gui) cfg = max(cfg_gui, def_cfg_gui) return gr.update(value=steps), gr.update(value=cfg), gr.update(value=sampler),\ gr.update(value=clip_skip), gr.update(value=lora), gr.update(value=lora_scale), # [sampler_gui, steps_gui, cfg_gui, clip_skip_gui, img_width_gui, img_height_gui, optimization_gui] preset_sampler_setting = { "None": ["Euler a", 28, 7., True, 1024, 1024, "None"], "Anime 3:4 Fast": ["LCM", 8, 2.5, True, 896, 1152, "DPO Turbo"], "Anime 3:4 Standard": ["Euler a", 28, 7., True, 896, 1152, "None"], "Anime 3:4 Heavy": ["Euler a", 40, 7., True, 896, 1152, "None"], "Anime 1:1 Fast": ["LCM", 8, 2.5, True, 1024, 1024, "DPO Turbo"], "Anime 1:1 Standard": ["Euler a", 28, 7., True, 1024, 1024, "None"], "Anime 1:1 Heavy": ["Euler a", 40, 7., True, 1024, 1024, "None"], "Photo 3:4 Fast": ["LCM", 8, 2.5, False, 896, 1152, "DPO Turbo"], "Photo 3:4 Standard": ["DPM++ 2M Karras", 28, 7., False, 896, 1152, "None"], "Photo 3:4 Heavy": ["DPM++ 2M Karras", 40, 7., False, 896, 1152, "None"], "Photo 1:1 Fast": ["LCM", 8, 2.5, False, 1024, 1024, "DPO Turbo"], "Photo 1:1 Standard": ["DPM++ 2M Karras", 28, 7., False, 1024, 1024, "None"], "Photo 1:1 Heavy": ["DPM++ 2M Karras", 40, 7., False, 1024, 1024, "None"], } def set_sampler_settings(sampler_setting): if not sampler_setting in list(preset_sampler_setting.keys()) or sampler_setting == "None": return gr.update(value="Euler a"), gr.update(value=28), gr.update(value=7.), gr.update(value=True),\ gr.update(value=1024), gr.update(value=1024), gr.update(value="None") v = preset_sampler_setting.get(sampler_setting, ["Euler a", 28, 7., True, 1024, 1024]) # sampler, steps, cfg, clip_skip, width, height, optimization return gr.update(value=v[0]), gr.update(value=v[1]), gr.update(value=v[2]), gr.update(value=v[3]),\ gr.update(value=v[4]), gr.update(value=v[5]), gr.update(value=v[6]) preset_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} preset_quality = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in quality_prompt_list} def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None", type: str = "Auto"): def to_list(s): return [x.strip() for x in s.split(",") if not s == ""] def list_sub(a, b): return [e for e in a if e not in b] def list_uniq(l): return sorted(set(l), key=l.index) animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres") animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]") pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres") pony_nps = to_list("source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends") prompts = to_list(prompt) neg_prompts = to_list(neg_prompt) all_styles_ps = [] all_styles_nps = [] for d in style_list: all_styles_ps.extend(to_list(str(d.get("prompt", "")))) all_styles_nps.extend(to_list(str(d.get("negative_prompt", "")))) all_quality_ps = [] all_quality_nps = [] for d in quality_prompt_list: all_quality_ps.extend(to_list(str(d.get("prompt", "")))) all_quality_nps.extend(to_list(str(d.get("negative_prompt", "")))) quality_ps = to_list(preset_quality[quality_key][0]) quality_nps = to_list(preset_quality[quality_key][1]) styles_ps = to_list(preset_styles[styles_key][0]) styles_nps = to_list(preset_styles[styles_key][1]) prompts = list_sub(prompts, animagine_ps + pony_ps + all_styles_ps + all_quality_ps) neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + all_styles_nps + all_quality_nps) last_empty_p = [""] if not prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else [] last_empty_np = [""] if not neg_prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else [] if type == "Animagine": prompts = prompts + animagine_ps neg_prompts = neg_prompts + animagine_nps elif type == "Pony": prompts = prompts + pony_ps neg_prompts = neg_prompts + pony_nps prompts = prompts + styles_ps + quality_ps neg_prompts = neg_prompts + styles_nps + quality_nps prompt = ", ".join(list_uniq(prompts) + last_empty_p) neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np) return gr.update(value=prompt), gr.update(value=neg_prompt), gr.update(value=type) def set_quick_presets(genre:str = "None", type:str = "Auto", speed:str = "None", aspect:str = "None"): quality = "None" style = "None" sampler = "None" opt = "None" if genre == "Anime": if type != "None" and type != "Auto": style = "Anime" if aspect == "1:1": if speed == "Heavy": sampler = "Anime 1:1 Heavy" elif speed == "Fast": sampler = "Anime 1:1 Fast" else: sampler = "Anime 1:1 Standard" elif aspect == "3:4": if speed == "Heavy": sampler = "Anime 3:4 Heavy" elif speed == "Fast": sampler = "Anime 3:4 Fast" else: sampler = "Anime 3:4 Standard" if type == "Pony": quality = "Pony Anime Common" elif type == "Animagine": quality = "Animagine Common" else: quality = "None" elif genre == "Photo": if type != "None" and type != "Auto": style = "Photographic" if aspect == "1:1": if speed == "Heavy": sampler = "Photo 1:1 Heavy" elif speed == "Fast": sampler = "Photo 1:1 Fast" else: sampler = "Photo 1:1 Standard" elif aspect == "3:4": if speed == "Heavy": sampler = "Photo 3:4 Heavy" elif speed == "Fast": sampler = "Photo 3:4 Fast" else: sampler = "Photo 3:4 Standard" if type == "Pony": quality = "Pony Common" else: quality = "None" if speed == "Fast": opt = "DPO Turbo" if genre == "Anime" and type != "Pony" and type != "Auto": quality = "Animagine Light v3.1" return gr.update(value=quality), gr.update(value=style), gr.update(value=sampler), gr.update(value=opt), gr.update(value=type) textual_inversion_dict = {} try: with open('textual_inversion_dict.json', encoding='utf-8') as f: textual_inversion_dict = json.load(f) except Exception: pass textual_inversion_file_token_list = [] def get_tupled_embed_list(embed_list): global textual_inversion_file_list tupled_list = [] for file in embed_list: token = textual_inversion_dict.get(Path(file).name, [Path(file).stem.replace(",",""), False])[0] tupled_list.append((token, file)) textual_inversion_file_token_list.append(token) return tupled_list def set_textual_inversion_prompt(textual_inversion_gui, prompt_gui, neg_prompt_gui, prompt_syntax_gui): ti_tags = list(textual_inversion_dict.values()) + textual_inversion_file_token_list tags = prompt_gui.split(",") if prompt_gui else [] prompts = [] for tag in tags: tag = str(tag).strip() if tag and not tag in ti_tags: prompts.append(tag) ntags = neg_prompt_gui.split(",") if neg_prompt_gui else [] neg_prompts = [] for tag in ntags: tag = str(tag).strip() if tag and not tag in ti_tags: neg_prompts.append(tag) ti_prompts = [] ti_neg_prompts = [] for ti in textual_inversion_gui: tokens = textual_inversion_dict.get(Path(ti).name, [Path(ti).stem.replace(",",""), False]) is_positive = tokens[1] == True or "positive" in Path(ti).parent.name if is_positive: # positive prompt ti_prompts.append(tokens[0]) else: # negative prompt (default) ti_neg_prompts.append(tokens[0]) empty = [""] prompt = ", ".join(prompts + ti_prompts + empty) neg_prompt = ", ".join(neg_prompts + ti_neg_prompts + empty) return gr.update(value=prompt), gr.update(value=neg_prompt), def get_model_pipeline(repo_id: str): from huggingface_hub import HfApi api = HfApi(token=HF_TOKEN) default = "StableDiffusionPipeline" try: if not is_repo_name(repo_id): return default model = api.model_info(repo_id=repo_id, timeout=5.0) except Exception: return default if model.private or model.gated: return default tags = model.tags if not 'diffusers' in tags: return default if 'diffusers:FluxPipeline' in tags: return "FluxPipeline" if 'diffusers:StableDiffusionXLPipeline' in tags: return "StableDiffusionXLPipeline" elif 'diffusers:StableDiffusionPipeline' in tags: return "StableDiffusionPipeline" else: return default