import torch from pathlib import Path from utils import get_download_file from stkey import read_safetensors_key try: from diffusers import BitsAndBytesConfig is_nf4 = True except Exception: is_nf4 = False DTYPE_DEFAULT = "default" DTYPE_DICT = { "fp16": torch.float16, "bf16": torch.bfloat16, "fp32": torch.float32, "fp8": torch.float8_e4m3fn, } #QTYPES = ["NF4"] if is_nf4 else [] QTYPES = [] def get_dtypes(): return list(DTYPE_DICT.keys()) + [DTYPE_DEFAULT] + QTYPES def get_dtype(dtype: str): if dtype in set(QTYPES): return torch.bfloat16 return DTYPE_DICT.get(dtype, torch.float16) from diffusers import ( DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, KDPM2DiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, HeunDiscreteScheduler, LMSDiscreteScheduler, DDIMScheduler, DEISMultistepScheduler, UniPCMultistepScheduler, LCMScheduler, PNDMScheduler, KDPM2AncestralDiscreteScheduler, DPMSolverSDEScheduler, EDMDPMSolverMultistepScheduler, DDPMScheduler, EDMEulerScheduler, TCDScheduler, ) SCHEDULER_CONFIG_MAP = { "DPM++ 2M": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "use_karras_sigmas": False}), "DPM++ 2M Karras": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "use_karras_sigmas": True}), "DPM++ 2M SDE": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}), "DPM++ 2M SDE Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}), "DPM++ 2S": (DPMSolverSinglestepScheduler, {"algorithm_type": "dpmsolver++", "use_karras_sigmas": False}), "DPM++ 2S Karras": (DPMSolverSinglestepScheduler, {"algorithm_type": "dpmsolver++", "use_karras_sigmas": True}), "DPM++ 1S": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "solver_order": 1}), "DPM++ 1S Karras": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "solver_order": 1, "use_karras_sigmas": True}), "DPM++ 3M": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "solver_order": 3}), "DPM++ 3M Karras": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "solver_order": 3, "use_karras_sigmas": True}), "DPM 3M": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver", "final_sigmas_type": "sigma_min", "solver_order": 3}), "DPM++ SDE": (DPMSolverSDEScheduler, {"use_karras_sigmas": False}), "DPM++ SDE Karras": (DPMSolverSDEScheduler, {"use_karras_sigmas": True}), "DPM2": (KDPM2DiscreteScheduler, {}), "DPM2 Karras": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}), "DPM2 a": (KDPM2AncestralDiscreteScheduler, {}), "DPM2 a Karras": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}), "Euler": (EulerDiscreteScheduler, {}), "Euler a": (EulerAncestralDiscreteScheduler, {}), "Euler trailing": (EulerDiscreteScheduler, {"timestep_spacing": "trailing", "prediction_type": "sample"}), "Euler a trailing": (EulerAncestralDiscreteScheduler, {"timestep_spacing": "trailing"}), "Heun": (HeunDiscreteScheduler, {}), "Heun Karras": (HeunDiscreteScheduler, {"use_karras_sigmas": True}), "LMS": (LMSDiscreteScheduler, {}), "LMS Karras": (LMSDiscreteScheduler, {"use_karras_sigmas": True}), "DDIM": (DDIMScheduler, {}), "DDIM trailing": (DDIMScheduler, {"timestep_spacing": "trailing"}), "DEIS": (DEISMultistepScheduler, {}), "UniPC": (UniPCMultistepScheduler, {}), "UniPC Karras": (UniPCMultistepScheduler, {"use_karras_sigmas": True}), "PNDM": (PNDMScheduler, {}), "Euler EDM": (EDMEulerScheduler, {}), "Euler EDM Karras": (EDMEulerScheduler, {"use_karras_sigmas": True}), "DPM++ 2M EDM": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}), "DPM++ 2M EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}), "DDPM": (DDPMScheduler, {}), "DPM++ 2M Lu": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "use_lu_lambdas": True}), "DPM++ 2M Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "euler_at_final": True}), "DPM++ 2M SDE Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}), "DPM++ 2M SDE Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}), "LCM": (LCMScheduler, {}), "TCD": (TCDScheduler, {}), "LCM trailing": (LCMScheduler, {"timestep_spacing": "trailing"}), "TCD trailing": (TCDScheduler, {"timestep_spacing": "trailing"}), "LCM Auto-Loader": (LCMScheduler, {}), "TCD Auto-Loader": (TCDScheduler, {}), "EDM": (EDMDPMSolverMultistepScheduler, {}), "EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True}), "Euler (V-Prediction)": (EulerDiscreteScheduler, {"prediction_type": "v_prediction", "rescale_betas_zero_snr": True}), "Euler a (V-Prediction)": (EulerAncestralDiscreteScheduler, {"prediction_type": "v_prediction", "rescale_betas_zero_snr": True}), "Euler EDM (V-Prediction)": (EDMEulerScheduler, {"prediction_type": "v_prediction"}), "Euler EDM Karras (V-Prediction)": (EDMEulerScheduler, {"use_karras_sigmas": True, "prediction_type": "v_prediction"}), "DPM++ 2M EDM (V-Prediction)": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++", "prediction_type": "v_prediction"}), "DPM++ 2M EDM Karras (V-Prediction)": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++", "prediction_type": "v_prediction"}), "EDM (V-Prediction)": (EDMDPMSolverMultistepScheduler, {"prediction_type": "v_prediction"}), "EDM Karras (V-Prediction)": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "prediction_type": "v_prediction"}), } def get_scheduler_config(name: str): if not name in SCHEDULER_CONFIG_MAP.keys(): return SCHEDULER_CONFIG_MAP["Euler a"] return SCHEDULER_CONFIG_MAP[name] def fuse_loras(pipe, lora_dict: dict, temp_dir: str, civitai_key: str="", dkwargs: dict={}): if not lora_dict or not isinstance(lora_dict, dict): return pipe a_list = [] w_list = [] for k, v in lora_dict.items(): if not k: continue new_lora_file = get_download_file(temp_dir, k, civitai_key) if not new_lora_file or not Path(new_lora_file).exists(): print(f"LoRA file not found: {k}") continue w_name = Path(new_lora_file).name a_name = Path(new_lora_file).stem pipe.load_lora_weights(new_lora_file, weight_name=w_name, adapter_name=a_name, low_cpu_mem_usage=False, **dkwargs) a_list.append(a_name) w_list.append(v) if Path(new_lora_file).exists(): Path(new_lora_file).unlink() if len(a_list) == 0: return pipe pipe.set_adapters(a_list, adapter_weights=w_list) pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0) pipe.unload_lora_weights() return pipe MODEL_TYPE_KEY = { "model.diffusion_model.output_blocks.1.1.norm.bias": "SDXL", "model.diffusion_model.input_blocks.11.0.out_layers.3.weight": "SD 1.5", "double_blocks.0.img_attn.norm.key_norm.scale": "FLUX", "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale": "FLUX", "model.diffusion_model.joint_blocks.9.x_block.attn.ln_k.weight": "SD 3.5", } def get_model_type_from_key(path: str): default = "SDXL" try: keys = read_safetensors_key(path) for k, v in MODEL_TYPE_KEY.items(): if k in set(keys): print(f"Model type is {v}.") return v print("Model type could not be identified.") except Exception: return default return default def get_process_dtype(dtype: str, model_type: str): if dtype in set(["fp8"] + QTYPES): return torch.bfloat16 if model_type in ["FLUX", "SD 3.5"] else torch.float16 return DTYPE_DICT.get(dtype, torch.float16)