Spaces:
Running
Running
File size: 3,217 Bytes
f4aa29b dc4889b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import os
if os.environ.get("SPACES_ZERO_GPU") is not None:
import spaces
else:
class spaces:
@staticmethod
def GPU(func):
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
import gradio as gr
import requests
import torch
from PIL import Image
from transformers import MllamaForConditionalGeneration, AutoProcessor
device = "cuda" if torch.cuda.is_available() else "cpu"
#model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model_id = "unsloth/Llama-3.2-11B-Vision-Instruct"
#model_id = "unsloth/Llama-3.2-11B-Vision-Instruct-bnb-4bit"
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg"
model = MllamaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
processor = AutoProcessor.from_pretrained(model_id)
@spaces.GPU
def infer(message: str, url: str):
kwargs = {}
image = Image.open(requests.get(url, stream=True).raw) if url and "http" in url else ""
if image: kwargs["images"] = image
messages = [
{"role": "user", "content": [
{"type": "image"},
{"type": "text", "text": message}
]}
]
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
#input_text = "<|image|> If I had to write a haiku for this one, it would be: "
inputs = processor(
text=input_text,
add_special_tokens=False,
return_tensors="pt",
**kwargs,
).to(model.device)
output = model.generate(**inputs, max_new_tokens=30)
output_str = processor.decode(output[0])
print(message)
print(url)
print(output_str)
return output_str
with gr.Blocks() as demo:
with gr.Row():
message = gr.Textbox(label="Message", value="Describe the image.", lines=1)
image_url = gr.Textbox(label="Image URL", value=url, lines=1)
run_button = gr.Button("Run", variant="primary")
info_md = gr.Markdown("<br><br><br>")
run_button.click(infer, [message, image_url], [info_md])
demo.launch()
"""
Describe the image.
https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
<|image|>Describe the image.<|eot_id|><|start_header_id|>assistant<|end_header_id|>
This image features a charming anthropomorphic rabbit, attired in a brown waistcoat and tan pants, with a blue coat draped over his shoulders, standing
If I had to write a haiku for this one, it would be:
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
<|image|>If I had to write a haiku for this one, it would be: <|eot_id|><|start_header_id|>assistant<|end_header_id|>
It seems like you started to write a haiku but didn't finish. Would you like to complete it?<|eot_id|>
Who are you?
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
<|image|>Who are you?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
I'm an artificial intelligence model known as Llama. Llama stands for "Large Language Model Meta AI."<|eot_id|>
""" |