File size: 31,295 Bytes
8aa9c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
# Copyright 2023 ByteDance and/or its affiliates.
#
# Copyright (2023) MagicAnimate Authors
#
# ByteDance, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from ByteDance or
# its affiliates is strictly prohibited.

import torch
import torch.nn.functional as F

from einops import rearrange
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

from diffusers.models.attention import BasicTransformerBlock
from magicanimate.models.attention import BasicTransformerBlock as _BasicTransformerBlock
from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D
from .stable_diffusion_controlnet_reference import torch_dfs


class AttentionBase:
    def __init__(self):
        self.cur_step = 0
        self.num_att_layers = -1
        self.cur_att_layer = 0

    def after_step(self):
        pass

    def __call__(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
        out = self.forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
        self.cur_att_layer += 1
        if self.cur_att_layer == self.num_att_layers:
            self.cur_att_layer = 0
            self.cur_step += 1
            # after step
            self.after_step()
        return out

    def forward(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
        out = torch.einsum('b i j, b j d -> b i d', attn, v)
        out = rearrange(out, '(b h) n d -> b n (h d)', h=num_heads)
        return out

    def reset(self):
        self.cur_step = 0
        self.cur_att_layer = 0


class MutualSelfAttentionControl(AttentionBase):

    def __init__(self, total_steps=50, hijack_init_state=True, with_negative_guidance=False, appearance_control_alpha=0.5, mode='enqueue'):
        """
        Mutual self-attention control for Stable-Diffusion MODEl
        Args:
            total_steps: the total number of steps
        """
        super().__init__()
        self.total_steps = total_steps
        self.hijack = hijack_init_state
        self.with_negative_guidance = with_negative_guidance
        
        # alpha: mutual self attention intensity
        # TODO: make alpha learnable
        self.alpha = appearance_control_alpha
        self.GLOBAL_ATTN_QUEUE = []
        assert mode in ['enqueue', 'dequeue']
        MODE = mode
    
    def attn_batch(self, q, k, v, num_heads, **kwargs):
        """
        Performing attention for a batch of queries, keys, and values
        """
        b = q.shape[0] // num_heads
        q = rearrange(q, "(b h) n d -> h (b n) d", h=num_heads)
        k = rearrange(k, "(b h) n d -> h (b n) d", h=num_heads)
        v = rearrange(v, "(b h) n d -> h (b n) d", h=num_heads)

        sim = torch.einsum("h i d, h j d -> h i j", q, k) * kwargs.get("scale")
        attn = sim.softmax(-1)
        out = torch.einsum("h i j, h j d -> h i d", attn, v)
        out = rearrange(out, "h (b n) d -> b n (h d)", b=b)
        return out

    def mutual_self_attn(self, q, k, v, num_heads, **kwargs):
        q_tgt, q_src = q.chunk(2)
        k_tgt, k_src = k.chunk(2)
        v_tgt, v_src = v.chunk(2)
        
        # out_tgt = self.attn_batch(q_tgt, k_src, v_src, num_heads, **kwargs) * self.alpha + \
        #           self.attn_batch(q_tgt, k_tgt, v_tgt, num_heads, **kwargs) * (1 - self.alpha)
        out_tgt = self.attn_batch(q_tgt, torch.cat([k_tgt, k_src], dim=1), torch.cat([v_tgt, v_src], dim=1), num_heads, **kwargs)
        out_src = self.attn_batch(q_src, k_src, v_src, num_heads, **kwargs)
        out = torch.cat([out_tgt, out_src], dim=0)
        return out
    
    def mutual_self_attn_wq(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
        if self.MODE == 'dequeue' and len(self.kv_queue) > 0:
            k_src, v_src = self.kv_queue.pop(0)
            out = self.attn_batch(q, torch.cat([k, k_src], dim=1), torch.cat([v, v_src], dim=1), num_heads, **kwargs)
            return out
        else:
            self.kv_queue.append([k.clone(), v.clone()])
            return super().forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
    
    def get_queue(self):
        return self.GLOBAL_ATTN_QUEUE
    
    def set_queue(self, attn_queue):
        self.GLOBAL_ATTN_QUEUE = attn_queue
    
    def clear_queue(self):
        self.GLOBAL_ATTN_QUEUE = []
    
    def to(self, dtype):
        self.GLOBAL_ATTN_QUEUE = [p.to(dtype) for p in self.GLOBAL_ATTN_QUEUE]

    def forward(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
        """
        Attention forward function
        """
        return super().forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)


class ReferenceAttentionControl():
    
    def __init__(self, 
                 unet,
                 mode="write",
                 do_classifier_free_guidance=False,
                 attention_auto_machine_weight = float('inf'),
                 gn_auto_machine_weight = 1.0,
                 style_fidelity = 1.0,
                 reference_attn=True,
                 reference_adain=False,
                 fusion_blocks="midup",
                 batch_size=1, 
                 ) -> None:
        # 10. Modify self attention and group norm
        self.unet = unet
        assert mode in ["read", "write"]
        assert fusion_blocks in ["midup", "full"]
        self.reference_attn = reference_attn
        self.reference_adain = reference_adain
        self.fusion_blocks = fusion_blocks
        self.register_reference_hooks(
            mode, 
            do_classifier_free_guidance,
            attention_auto_machine_weight,
            gn_auto_machine_weight,
            style_fidelity,
            reference_attn,
            reference_adain,
            fusion_blocks,
            batch_size=batch_size, 
        )

    def register_reference_hooks(
            self, 
            mode, 
            do_classifier_free_guidance,
            attention_auto_machine_weight,
            gn_auto_machine_weight,
            style_fidelity,
            reference_attn,
            reference_adain,
            dtype=torch.float16,
            batch_size=1, 
            num_images_per_prompt=1, 
            device=torch.device("cpu"), 
            fusion_blocks='midup',
        ):
        MODE = mode
        do_classifier_free_guidance = do_classifier_free_guidance
        attention_auto_machine_weight = attention_auto_machine_weight
        gn_auto_machine_weight = gn_auto_machine_weight
        style_fidelity = style_fidelity
        reference_attn = reference_attn
        reference_adain = reference_adain
        fusion_blocks = fusion_blocks
        num_images_per_prompt = num_images_per_prompt
        dtype=dtype
        if do_classifier_free_guidance:
            uc_mask = (
                torch.Tensor([1] * batch_size * num_images_per_prompt * 16 + [0] * batch_size * num_images_per_prompt * 16)
                .to(device)
                .bool()
            )
        else:
            uc_mask = (
                torch.Tensor([0] * batch_size * num_images_per_prompt * 2)
                .to(device)
                .bool()
            )
        
        def hacked_basic_transformer_inner_forward(
            self,
            hidden_states: torch.FloatTensor,
            attention_mask: Optional[torch.FloatTensor] = None,
            encoder_hidden_states: Optional[torch.FloatTensor] = None,
            encoder_attention_mask: Optional[torch.FloatTensor] = None,
            timestep: Optional[torch.LongTensor] = None,
            cross_attention_kwargs: Dict[str, Any] = None,
            class_labels: Optional[torch.LongTensor] = None,
            video_length=None,
        ):
            if self.use_ada_layer_norm:
                norm_hidden_states = self.norm1(hidden_states, timestep)
            elif self.use_ada_layer_norm_zero:
                norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                    hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
                )
            else:
                norm_hidden_states = self.norm1(hidden_states)

            # 1. Self-Attention
            cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
            if self.only_cross_attention:
                attn_output = self.attn1(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
                    attention_mask=attention_mask,
                    **cross_attention_kwargs,
                )
            else:
                if MODE == "write":
                    self.bank.append(norm_hidden_states.clone())
                    attn_output = self.attn1(
                        norm_hidden_states,
                        encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
                        attention_mask=attention_mask,
                        **cross_attention_kwargs,
                    )
                if MODE == "read":
                    self.bank = [rearrange(d.unsqueeze(1).repeat(1, video_length, 1, 1), "b t l c -> (b t) l c")[:hidden_states.shape[0]] for d in self.bank]
                    hidden_states_uc = self.attn1(norm_hidden_states, 
                                                encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1),
                                                attention_mask=attention_mask) + hidden_states
                    hidden_states_c = hidden_states_uc.clone()
                    _uc_mask = uc_mask.clone()
                    if do_classifier_free_guidance:
                        if hidden_states.shape[0] != _uc_mask.shape[0]:
                            _uc_mask = (
                                torch.Tensor([1] * (hidden_states.shape[0]//2) + [0] * (hidden_states.shape[0]//2))
                                .to(device)
                                .bool()
                            )
                        hidden_states_c[_uc_mask] = self.attn1(
                            norm_hidden_states[_uc_mask],
                            encoder_hidden_states=norm_hidden_states[_uc_mask],
                            attention_mask=attention_mask,
                        ) + hidden_states[_uc_mask]
                    hidden_states = hidden_states_c.clone()
                        
                    self.bank.clear()
                    if self.attn2 is not None:
                        # Cross-Attention
                        norm_hidden_states = (
                            self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
                        )
                        hidden_states = (
                            self.attn2(
                                norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
                            )
                            + hidden_states
                        )

                    # Feed-forward
                    hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states

                    # Temporal-Attention
                    if self.unet_use_temporal_attention:
                        d = hidden_states.shape[1]
                        hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
                        norm_hidden_states = (
                            self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
                        )
                        hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
                        hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)

                    return hidden_states
                
            if self.use_ada_layer_norm_zero:
                attn_output = gate_msa.unsqueeze(1) * attn_output
            hidden_states = attn_output + hidden_states

            if self.attn2 is not None:
                norm_hidden_states = (
                    self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
                )

                # 2. Cross-Attention
                attn_output = self.attn2(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=encoder_attention_mask,
                    **cross_attention_kwargs,
                )
                hidden_states = attn_output + hidden_states

            # 3. Feed-forward
            norm_hidden_states = self.norm3(hidden_states)

            if self.use_ada_layer_norm_zero:
                norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

            ff_output = self.ff(norm_hidden_states)

            if self.use_ada_layer_norm_zero:
                ff_output = gate_mlp.unsqueeze(1) * ff_output

            hidden_states = ff_output + hidden_states

            return hidden_states

        def hacked_mid_forward(self, *args, **kwargs):
            eps = 1e-6
            x = self.original_forward(*args, **kwargs)
            if MODE == "write":
                if gn_auto_machine_weight >= self.gn_weight:
                    var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
                    self.mean_bank.append(mean)
                    self.var_bank.append(var)
            if MODE == "read":
                if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
                    var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
                    std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
                    mean_acc = sum(self.mean_bank) / float(len(self.mean_bank))
                    var_acc = sum(self.var_bank) / float(len(self.var_bank))
                    std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
                    x_uc = (((x - mean) / std) * std_acc) + mean_acc
                    x_c = x_uc.clone()
                    if do_classifier_free_guidance and style_fidelity > 0:
                        x_c[uc_mask] = x[uc_mask]
                    x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc
                self.mean_bank = []
                self.var_bank = []
            return x

        def hack_CrossAttnDownBlock2D_forward(
            self,
            hidden_states: torch.FloatTensor,
            temb: Optional[torch.FloatTensor] = None,
            encoder_hidden_states: Optional[torch.FloatTensor] = None,
            attention_mask: Optional[torch.FloatTensor] = None,
            cross_attention_kwargs: Optional[Dict[str, Any]] = None,
            encoder_attention_mask: Optional[torch.FloatTensor] = None,
        ):
            eps = 1e-6

            # TODO(Patrick, William) - attention mask is not used
            output_states = ()

            for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
                hidden_states = resnet(hidden_states, temb)
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]
                if MODE == "write":
                    if gn_auto_machine_weight >= self.gn_weight:
                        var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
                        self.mean_bank.append([mean])
                        self.var_bank.append([var])
                if MODE == "read":
                    if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
                        var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
                        std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
                        mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
                        var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
                        std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
                        hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
                        hidden_states_c = hidden_states_uc.clone()
                        if do_classifier_free_guidance and style_fidelity > 0:
                            hidden_states_c[uc_mask] = hidden_states[uc_mask].to(hidden_states_c.dtype)
                        hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc

                output_states = output_states + (hidden_states,)

            if MODE == "read":
                self.mean_bank = []
                self.var_bank = []

            if self.downsamplers is not None:
                for downsampler in self.downsamplers:
                    hidden_states = downsampler(hidden_states)

                output_states = output_states + (hidden_states,)

            return hidden_states, output_states

        def hacked_DownBlock2D_forward(self, hidden_states, temb=None):
            eps = 1e-6

            output_states = ()

            for i, resnet in enumerate(self.resnets):
                hidden_states = resnet(hidden_states, temb)

                if MODE == "write":
                    if gn_auto_machine_weight >= self.gn_weight:
                        var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
                        self.mean_bank.append([mean])
                        self.var_bank.append([var])
                if MODE == "read":
                    if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
                        var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
                        std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
                        mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
                        var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
                        std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
                        hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
                        hidden_states_c = hidden_states_uc.clone()
                        if do_classifier_free_guidance and style_fidelity > 0:
                            hidden_states_c[uc_mask] = hidden_states[uc_mask].to(hidden_states_c.dtype)
                        hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc

                output_states = output_states + (hidden_states,)

            if MODE == "read":
                self.mean_bank = []
                self.var_bank = []

            if self.downsamplers is not None:
                for downsampler in self.downsamplers:
                    hidden_states = downsampler(hidden_states)

                output_states = output_states + (hidden_states,)

            return hidden_states, output_states

        def hacked_CrossAttnUpBlock2D_forward(
            self,
            hidden_states: torch.FloatTensor,
            res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
            temb: Optional[torch.FloatTensor] = None,
            encoder_hidden_states: Optional[torch.FloatTensor] = None,
            cross_attention_kwargs: Optional[Dict[str, Any]] = None,
            upsample_size: Optional[int] = None,
            attention_mask: Optional[torch.FloatTensor] = None,
            encoder_attention_mask: Optional[torch.FloatTensor] = None,
        ):
            eps = 1e-6
            # TODO(Patrick, William) - attention mask is not used
            for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
                # pop res hidden states
                res_hidden_states = res_hidden_states_tuple[-1]
                res_hidden_states_tuple = res_hidden_states_tuple[:-1]
                hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
                hidden_states = resnet(hidden_states, temb)
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]

                if MODE == "write":
                    if gn_auto_machine_weight >= self.gn_weight:
                        var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
                        self.mean_bank.append([mean])
                        self.var_bank.append([var])
                if MODE == "read":
                    if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
                        var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
                        std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
                        mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
                        var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
                        std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
                        hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
                        hidden_states_c = hidden_states_uc.clone()
                        if do_classifier_free_guidance and style_fidelity > 0:
                            hidden_states_c[uc_mask] = hidden_states[uc_mask].to(hidden_states_c.dtype)
                        hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc

            if MODE == "read":
                self.mean_bank = []
                self.var_bank = []

            if self.upsamplers is not None:
                for upsampler in self.upsamplers:
                    hidden_states = upsampler(hidden_states, upsample_size)

            return hidden_states

        def hacked_UpBlock2D_forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
            eps = 1e-6
            for i, resnet in enumerate(self.resnets):
                # pop res hidden states
                res_hidden_states = res_hidden_states_tuple[-1]
                res_hidden_states_tuple = res_hidden_states_tuple[:-1]
                hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
                hidden_states = resnet(hidden_states, temb)

                if MODE == "write":
                    if gn_auto_machine_weight >= self.gn_weight:
                        var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
                        self.mean_bank.append([mean])
                        self.var_bank.append([var])
                if MODE == "read":
                    if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
                        var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
                        std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
                        mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
                        var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
                        std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
                        hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
                        hidden_states_c = hidden_states_uc.clone()
                        if do_classifier_free_guidance and style_fidelity > 0:
                            hidden_states_c[uc_mask] = hidden_states[uc_mask].to(hidden_states_c.dtype)
                        hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc

            if MODE == "read":
                self.mean_bank = []
                self.var_bank = []

            if self.upsamplers is not None:
                for upsampler in self.upsamplers:
                    hidden_states = upsampler(hidden_states, upsample_size)

            return hidden_states

        if self.reference_attn:
            if self.fusion_blocks == "midup":
                attn_modules = [module for module in (torch_dfs(self.unet.mid_block)+torch_dfs(self.unet.up_blocks)) if isinstance(module, BasicTransformerBlock) or isinstance(module, _BasicTransformerBlock)]
            elif self.fusion_blocks == "full":
                attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock) or isinstance(module, _BasicTransformerBlock)]            
            attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0])

            for i, module in enumerate(attn_modules):
                module._original_inner_forward = module.forward
                module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock)
                module.bank = []
                module.attn_weight = float(i) / float(len(attn_modules))

        if self.reference_adain:
            gn_modules = [self.unet.mid_block]
            self.unet.mid_block.gn_weight = 0

            down_blocks = self.unet.down_blocks
            for w, module in enumerate(down_blocks):
                module.gn_weight = 1.0 - float(w) / float(len(down_blocks))
                gn_modules.append(module)

            up_blocks = self.unet.up_blocks
            for w, module in enumerate(up_blocks):
                module.gn_weight = float(w) / float(len(up_blocks))
                gn_modules.append(module)

            for i, module in enumerate(gn_modules):
                if getattr(module, "original_forward", None) is None:
                    module.original_forward = module.forward
                if i == 0:
                    # mid_block
                    module.forward = hacked_mid_forward.__get__(module, torch.nn.Module)
                elif isinstance(module, CrossAttnDownBlock2D):
                    module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D)
                elif isinstance(module, DownBlock2D):
                    module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D)
                elif isinstance(module, CrossAttnUpBlock2D):
                    module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D)
                elif isinstance(module, UpBlock2D):
                    module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D)
                module.mean_bank = []
                module.var_bank = []
                module.gn_weight *= 2
    
    def update(self, writer, dtype=torch.float16):
        if self.reference_attn:
            if self.fusion_blocks == "midup":
                reader_attn_modules = [module for module in (torch_dfs(self.unet.mid_block)+torch_dfs(self.unet.up_blocks)) if isinstance(module, _BasicTransformerBlock)]
                writer_attn_modules = [module for module in (torch_dfs(writer.unet.mid_block)+torch_dfs(writer.unet.up_blocks)) if isinstance(module, BasicTransformerBlock)]
            elif self.fusion_blocks == "full":
                reader_attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, _BasicTransformerBlock)]
                writer_attn_modules = [module for module in torch_dfs(writer.unet) if isinstance(module, BasicTransformerBlock)]
            reader_attn_modules = sorted(reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0])    
            writer_attn_modules = sorted(writer_attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
            for r, w in zip(reader_attn_modules, writer_attn_modules):
                r.bank = [v.clone().to(dtype) for v in w.bank]
                # w.bank.clear()
        if self.reference_adain:
            reader_gn_modules = [self.unet.mid_block]
            
            down_blocks = self.unet.down_blocks
            for w, module in enumerate(down_blocks):
                reader_gn_modules.append(module)

            up_blocks = self.unet.up_blocks
            for w, module in enumerate(up_blocks):
                reader_gn_modules.append(module)
                
            writer_gn_modules = [writer.unet.mid_block]
            
            down_blocks = writer.unet.down_blocks
            for w, module in enumerate(down_blocks):
                writer_gn_modules.append(module)

            up_blocks = writer.unet.up_blocks
            for w, module in enumerate(up_blocks):
                writer_gn_modules.append(module)
            
            for r, w in zip(reader_gn_modules, writer_gn_modules):
                if len(w.mean_bank) > 0 and isinstance(w.mean_bank[0], list):
                    r.mean_bank = [[v.clone().to(dtype) for v in vl] for vl in w.mean_bank]
                    r.var_bank = [[v.clone().to(dtype) for v in vl] for vl in w.var_bank]
                else:
                    r.mean_bank = [v.clone().to(dtype) for v in w.mean_bank]
                    r.var_bank = [v.clone().to(dtype) for v in w.var_bank]
    
    def clear(self):
        if self.reference_attn:
            if self.fusion_blocks == "midup":
                reader_attn_modules = [module for module in (torch_dfs(self.unet.mid_block)+torch_dfs(self.unet.up_blocks)) if isinstance(module, BasicTransformerBlock) or isinstance(module, _BasicTransformerBlock)]
            elif self.fusion_blocks == "full":
                reader_attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock) or isinstance(module, _BasicTransformerBlock)]
            reader_attn_modules = sorted(reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
            for r in reader_attn_modules:
                r.bank.clear()
        if self.reference_adain:
            reader_gn_modules = [self.unet.mid_block]
            
            down_blocks = self.unet.down_blocks
            for w, module in enumerate(down_blocks):
                reader_gn_modules.append(module)

            up_blocks = self.unet.up_blocks
            for w, module in enumerate(up_blocks):
                reader_gn_modules.append(module)
            
            for r in reader_gn_modules:
                r.mean_bank.clear()
                r.var_bank.clear()