File size: 6,097 Bytes
8aa9c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# *************************************************************************
# This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
# difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B-
# ytedance Inc..  
# *************************************************************************

# Copyright 2022 ByteDance and/or its affiliates.
#
# Copyright (2022) PV3D Authors
#
# ByteDance, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from ByteDance or
# its affiliates is strictly prohibited.
import av, gc
import torch
import warnings
import numpy as np


_CALLED_TIMES = 0
_GC_COLLECTION_INTERVAL = 20


# remove warnings
av.logging.set_level(av.logging.ERROR)


class VideoReader():
    """
    Simple wrapper around PyAV that exposes a few useful functions for
    dealing with video reading. PyAV is a pythonic binding for the ffmpeg libraries.
    Acknowledgement: Codes are borrowed from Bruno Korbar
    """
    def __init__(self, video, num_frames=float("inf"), decode_lossy=False, audio_resample_rate=None, bi_frame=False):
        """
        Arguments:
            video_path (str): path or byte of the video to be loaded
        """
        self.container = av.open(video)
        self.num_frames = num_frames
        self.bi_frame = bi_frame
        
        self.resampler = None
        if audio_resample_rate is not None:
            self.resampler = av.AudioResampler(rate=audio_resample_rate)
        
        if self.container.streams.video:
            # enable multi-threaded video decoding
            if decode_lossy:
                warnings.warn('VideoReader| thread_type==AUTO can yield potential frame dropping!', RuntimeWarning)
                self.container.streams.video[0].thread_type = 'AUTO'
            self.video_stream = self.container.streams.video[0]
        else:
            self.video_stream = None
        
        self.fps = self._get_video_frame_rate()

    def seek(self, pts, backward=True, any_frame=False):
        stream = self.video_stream
        self.container.seek(pts, any_frame=any_frame, backward=backward, stream=stream)

    def _occasional_gc(self):
        # there are a lot of reference cycles in PyAV, so need to manually call
        # the garbage collector from time to time
        global _CALLED_TIMES, _GC_COLLECTION_INTERVAL
        _CALLED_TIMES += 1
        if _CALLED_TIMES % _GC_COLLECTION_INTERVAL == _GC_COLLECTION_INTERVAL - 1:
            gc.collect()

    def _read_video(self, offset):
        self._occasional_gc()

        pts = self.container.duration * offset
        time_ = pts / float(av.time_base)
        self.container.seek(int(pts))

        video_frames = []
        count = 0
        for _, frame in enumerate(self._iter_frames()):
            if frame.pts * frame.time_base >= time_:
                video_frames.append(frame)
                if count >= self.num_frames - 1:
                    break
                count += 1
        return video_frames

    def _iter_frames(self):
        for packet in self.container.demux(self.video_stream):
            for frame in packet.decode():
                yield frame

    def _compute_video_stats(self):
        if self.video_stream is None or self.container is None:
            return 0
        num_of_frames = self.container.streams.video[0].frames
        if num_of_frames == 0:
            num_of_frames = self.fps * float(self.container.streams.video[0].duration*self.video_stream.time_base)
        self.seek(0, backward=False)
        count = 0
        time_base = 512
        for p in self.container.decode(video=0):
            count = count + 1
            if count == 1:
                start_pts = p.pts
            elif count == 2:
                time_base = p.pts - start_pts
                break
        return start_pts, time_base, num_of_frames
    
    def _get_video_frame_rate(self):
        return float(self.container.streams.video[0].guessed_rate)
    
    def sample(self, debug=False):
        
        if self.container is None:
            raise RuntimeError('video stream not found')
        sample = dict()
        _, _, total_num_frames = self._compute_video_stats()
        offset = torch.randint(max(1, total_num_frames-self.num_frames-1), [1]).item()
        video_frames = self._read_video(offset/total_num_frames)
        video_frames = np.array([np.uint8(f.to_rgb().to_ndarray()) for f in video_frames])
        sample["frames"] = video_frames
        sample["frame_idx"] = [offset]

        if self.bi_frame:
            frames = [np.random.beta(2, 1, size=1), np.random.beta(1, 2, size=1)]
            frames = [int(frames[0] * self.num_frames), int(frames[1] * self.num_frames)]
            frames.sort()
            video_frames = np.array([video_frames[min(frames)], video_frames[max(frames)]])
            Ts= [min(frames) / (self.num_frames - 1), max(frames) / (self.num_frames - 1)]
            sample["frames"] = video_frames
            sample["real_t"] = torch.tensor(Ts, dtype=torch.float32)
            sample["frame_idx"] = [offset+min(frames), offset+max(frames)]
            return sample

        return sample

    def read_frames(self, frame_indices):
        self.num_frames = frame_indices[1] - frame_indices[0]
        video_frames = self._read_video(frame_indices[0]/self.get_num_frames())
        video_frames = np.array([
            np.uint8(video_frames[0].to_rgb().to_ndarray()),
            np.uint8(video_frames[-1].to_rgb().to_ndarray())
        ])
        return video_frames

    def read(self):
        video_frames = self._read_video(0)
        video_frames = np.array([np.uint8(f.to_rgb().to_ndarray()) for f in video_frames])
        return video_frames
    
    def get_num_frames(self):
        _, _, total_num_frames = self._compute_video_stats()
        return total_num_frames