Spaces:
Running
Running
# ************************************************************************* | |
# This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo- | |
# difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B- | |
# ytedance Inc.. | |
# ************************************************************************* | |
# Inspired by: https://github.com/Mikubill/sd-webui-controlnet/discussions/1236 and https://github.com/Mikubill/sd-webui-controlnet/discussions/1280 | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
from diffusers import StableDiffusionControlNetPipeline | |
from diffusers.models import ControlNetModel | |
from diffusers.models.attention import BasicTransformerBlock | |
from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D | |
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.utils import logging | |
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import cv2 | |
>>> import torch | |
>>> import numpy as np | |
>>> from PIL import Image | |
>>> from diffusers import UniPCMultistepScheduler | |
>>> from diffusers.utils import load_image | |
>>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png") | |
>>> # get canny image | |
>>> image = cv2.Canny(np.array(input_image), 100, 200) | |
>>> image = image[:, :, None] | |
>>> image = np.concatenate([image, image, image], axis=2) | |
>>> canny_image = Image.fromarray(image) | |
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16) | |
>>> pipe = StableDiffusionControlNetReferencePipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
controlnet=controlnet, | |
safety_checker=None, | |
torch_dtype=torch.float16 | |
).to('cuda:0') | |
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe_controlnet.scheduler.config) | |
>>> result_img = pipe(ref_image=input_image, | |
prompt="1girl", | |
image=canny_image, | |
num_inference_steps=20, | |
reference_attn=True, | |
reference_adain=True).images[0] | |
>>> result_img.show() | |
``` | |
""" | |
def torch_dfs(model: torch.nn.Module): | |
result = [model] | |
for child in model.children(): | |
result += torch_dfs(child) | |
return result | |
class StableDiffusionControlNetReferencePipeline(StableDiffusionControlNetPipeline): | |
def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance): | |
refimage = refimage.to(device=device, dtype=dtype) | |
# encode the mask image into latents space so we can concatenate it to the latents | |
if isinstance(generator, list): | |
ref_image_latents = [ | |
self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i]) | |
for i in range(batch_size) | |
] | |
ref_image_latents = torch.cat(ref_image_latents, dim=0) | |
else: | |
ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator) | |
ref_image_latents = self.vae.config.scaling_factor * ref_image_latents | |
# duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method | |
if ref_image_latents.shape[0] < batch_size: | |
if not batch_size % ref_image_latents.shape[0] == 0: | |
raise ValueError( | |
"The passed images and the required batch size don't match. Images are supposed to be duplicated" | |
f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed." | |
" Make sure the number of images that you pass is divisible by the total requested batch size." | |
) | |
ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1) | |
ref_image_latents = torch.cat([ref_image_latents] * 2) if do_classifier_free_guidance else ref_image_latents | |
# aligning device to prevent device errors when concating it with the latent model input | |
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype) | |
return ref_image_latents | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
image: Union[ | |
torch.FloatTensor, | |
PIL.Image.Image, | |
np.ndarray, | |
List[torch.FloatTensor], | |
List[PIL.Image.Image], | |
List[np.ndarray], | |
] = None, | |
ref_image: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
controlnet_conditioning_scale: Union[float, List[float]] = 1.0, | |
guess_mode: bool = False, | |
attention_auto_machine_weight: float = 1.0, | |
gn_auto_machine_weight: float = 1.0, | |
style_fidelity: float = 0.5, | |
reference_attn: bool = True, | |
reference_adain: bool = True, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: | |
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): | |
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If | |
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can | |
also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If | |
height and/or width are passed, `image` is resized according to them. If multiple ControlNets are | |
specified in init, images must be passed as a list such that each element of the list can be correctly | |
batched for input to a single controlnet. | |
ref_image (`torch.FloatTensor`, `PIL.Image.Image`): | |
The Reference Control input condition. Reference Control uses this input condition to generate guidance to Unet. If | |
the type is specified as `Torch.FloatTensor`, it is passed to Reference Control as is. `PIL.Image.Image` can | |
also be accepted as an image. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | |
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added | |
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the | |
corresponding scale as a list. | |
guess_mode (`bool`, *optional*, defaults to `False`): | |
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if | |
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended. | |
attention_auto_machine_weight (`float`): | |
Weight of using reference query for self attention's context. | |
If attention_auto_machine_weight=1.0, use reference query for all self attention's context. | |
gn_auto_machine_weight (`float`): | |
Weight of using reference adain. If gn_auto_machine_weight=2.0, use all reference adain plugins. | |
style_fidelity (`float`): | |
style fidelity of ref_uncond_xt. If style_fidelity=1.0, control more important, | |
elif style_fidelity=0.0, prompt more important, else balanced. | |
reference_attn (`bool`): | |
Whether to use reference query for self attention's context. | |
reference_adain (`bool`): | |
Whether to use reference adain. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
When returning a tuple, the first element is a list with the generated images, and the second element is a | |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content, according to the `safety_checker`. | |
""" | |
assert reference_attn or reference_adain, "`reference_attn` or `reference_adain` must be True." | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
image, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
controlnet_conditioning_scale, | |
) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet | |
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): | |
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) | |
global_pool_conditions = ( | |
controlnet.config.global_pool_conditions | |
if isinstance(controlnet, ControlNetModel) | |
else controlnet.nets[0].config.global_pool_conditions | |
) | |
guess_mode = guess_mode or global_pool_conditions | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
) | |
prompt_embeds = self._encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
) | |
# 4. Prepare image | |
if isinstance(controlnet, ControlNetModel): | |
image = self.prepare_image( | |
image=image, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=controlnet.dtype, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
guess_mode=guess_mode, | |
) | |
height, width = image.shape[-2:] | |
elif isinstance(controlnet, MultiControlNetModel): | |
images = [] | |
for image_ in image: | |
image_ = self.prepare_image( | |
image=image_, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=controlnet.dtype, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
guess_mode=guess_mode, | |
) | |
images.append(image_) | |
image = images | |
height, width = image[0].shape[-2:] | |
else: | |
assert False | |
# 5. Preprocess reference image | |
ref_image = self.prepare_image( | |
image=ref_image, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=prompt_embeds.dtype, | |
) | |
# 6. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 7. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 8. Prepare reference latent variables | |
ref_image_latents = self.prepare_ref_latents( | |
ref_image, | |
batch_size * num_images_per_prompt, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
do_classifier_free_guidance, | |
) | |
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 10. Modify self attention and group norm | |
MODE = "write" | |
uc_mask = ( | |
torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt) | |
.type_as(ref_image_latents) | |
.bool() | |
) | |
def hacked_basic_transformer_inner_forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
): | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
else: | |
norm_hidden_states = self.norm1(hidden_states) | |
# 1. Self-Attention | |
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
if self.only_cross_attention: | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
else: | |
if MODE == "write": | |
self.bank.append(norm_hidden_states.detach().clone()) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if MODE == "read": | |
if attention_auto_machine_weight > self.attn_weight: | |
attn_output_uc = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1), | |
# attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
attn_output_c = attn_output_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
attn_output_c[uc_mask] = self.attn1( | |
norm_hidden_states[uc_mask], | |
encoder_hidden_states=norm_hidden_states[uc_mask], | |
**cross_attention_kwargs, | |
) | |
attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc | |
self.bank.clear() | |
else: | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = attn_output + hidden_states | |
if self.attn2 is not None: | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
) | |
# 2. Cross-Attention | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 3. Feed-forward | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
ff_output = self.ff(norm_hidden_states) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = ff_output + hidden_states | |
return hidden_states | |
def hacked_mid_forward(self, *args, **kwargs): | |
eps = 1e-6 | |
x = self.original_forward(*args, **kwargs) | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append(mean) | |
self.var_bank.append(var) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank) / float(len(self.mean_bank)) | |
var_acc = sum(self.var_bank) / float(len(self.var_bank)) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
x_uc = (((x - mean) / std) * std_acc) + mean_acc | |
x_c = x_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
x_c[uc_mask] = x[uc_mask] | |
x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc | |
self.mean_bank = [] | |
self.var_bank = [] | |
return x | |
def hack_CrossAttnDownBlock2D_forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
): | |
eps = 1e-6 | |
# TODO(Patrick, William) - attention mask is not used | |
output_states = () | |
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)): | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append([mean]) | |
self.var_bank.append([var]) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
hidden_states_c = hidden_states_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
output_states = output_states + (hidden_states,) | |
if MODE == "read": | |
self.mean_bank = [] | |
self.var_bank = [] | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
def hacked_DownBlock2D_forward(self, hidden_states, temb=None): | |
eps = 1e-6 | |
output_states = () | |
for i, resnet in enumerate(self.resnets): | |
hidden_states = resnet(hidden_states, temb) | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append([mean]) | |
self.var_bank.append([var]) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
hidden_states_c = hidden_states_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
output_states = output_states + (hidden_states,) | |
if MODE == "read": | |
self.mean_bank = [] | |
self.var_bank = [] | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
def hacked_CrossAttnUpBlock2D_forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
upsample_size: Optional[int] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
): | |
eps = 1e-6 | |
# TODO(Patrick, William) - attention mask is not used | |
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append([mean]) | |
self.var_bank.append([var]) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
hidden_states_c = hidden_states_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
if MODE == "read": | |
self.mean_bank = [] | |
self.var_bank = [] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
def hacked_UpBlock2D_forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None): | |
eps = 1e-6 | |
for i, resnet in enumerate(self.resnets): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
hidden_states = resnet(hidden_states, temb) | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append([mean]) | |
self.var_bank.append([var]) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
hidden_states_c = hidden_states_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
if MODE == "read": | |
self.mean_bank = [] | |
self.var_bank = [] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
if reference_attn: | |
attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)] | |
attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0]) | |
for i, module in enumerate(attn_modules): | |
module._original_inner_forward = module.forward | |
module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock) | |
module.bank = [] | |
module.attn_weight = float(i) / float(len(attn_modules)) | |
if reference_adain: | |
gn_modules = [self.unet.mid_block] | |
self.unet.mid_block.gn_weight = 0 | |
down_blocks = self.unet.down_blocks | |
for w, module in enumerate(down_blocks): | |
module.gn_weight = 1.0 - float(w) / float(len(down_blocks)) | |
gn_modules.append(module) | |
up_blocks = self.unet.up_blocks | |
for w, module in enumerate(up_blocks): | |
module.gn_weight = float(w) / float(len(up_blocks)) | |
gn_modules.append(module) | |
for i, module in enumerate(gn_modules): | |
if getattr(module, "original_forward", None) is None: | |
module.original_forward = module.forward | |
if i == 0: | |
# mid_block | |
module.forward = hacked_mid_forward.__get__(module, torch.nn.Module) | |
elif isinstance(module, CrossAttnDownBlock2D): | |
module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D) | |
elif isinstance(module, DownBlock2D): | |
module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D) | |
elif isinstance(module, CrossAttnUpBlock2D): | |
module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D) | |
elif isinstance(module, UpBlock2D): | |
module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D) | |
module.mean_bank = [] | |
module.var_bank = [] | |
module.gn_weight *= 2 | |
# 11. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# controlnet(s) inference | |
if guess_mode and do_classifier_free_guidance: | |
# Infer ControlNet only for the conditional batch. | |
control_model_input = latents | |
control_model_input = self.scheduler.scale_model_input(control_model_input, t) | |
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] | |
else: | |
control_model_input = latent_model_input | |
controlnet_prompt_embeds = prompt_embeds | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
control_model_input, | |
t, | |
encoder_hidden_states=controlnet_prompt_embeds, | |
controlnet_cond=image, | |
conditioning_scale=controlnet_conditioning_scale, | |
guess_mode=guess_mode, | |
return_dict=False, | |
) | |
if guess_mode and do_classifier_free_guidance: | |
# Infered ControlNet only for the conditional batch. | |
# To apply the output of ControlNet to both the unconditional and conditional batches, | |
# add 0 to the unconditional batch to keep it unchanged. | |
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] | |
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) | |
# ref only part | |
noise = randn_tensor( | |
ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype | |
) | |
ref_xt = self.scheduler.add_noise( | |
ref_image_latents, | |
noise, | |
t.reshape( | |
1, | |
), | |
) | |
ref_xt = self.scheduler.scale_model_input(ref_xt, t) | |
MODE = "write" | |
self.unet( | |
ref_xt, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
) | |
# predict the noise residual | |
MODE = "read" | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
# If we do sequential model offloading, let's offload unet and controlnet | |
# manually for max memory savings | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.unet.to("cpu") | |
self.controlnet.to("cpu") | |
torch.cuda.empty_cache() | |
if not output_type == "latent": | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
else: | |
image = latents | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
# Offload last model to CPU | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |