Spaces:
Running
Running
# ************************************************************************* | |
# This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo- | |
# difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B- | |
# ytedance Inc.. | |
# ************************************************************************* | |
# Adapted from https://github.com/guoyww/AnimateDiff | |
import os | |
import imageio | |
import numpy as np | |
import torch | |
import torchvision | |
from PIL import Image | |
from typing import Union | |
from tqdm import tqdm | |
from einops import rearrange | |
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=25): | |
videos = rearrange(videos, "b c t h w -> t b c h w") | |
outputs = [] | |
for x in videos: | |
x = torchvision.utils.make_grid(x, nrow=n_rows) | |
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
if rescale: | |
x = (x + 1.0) / 2.0 # -1,1 -> 0,1 | |
x = (x * 255).numpy().astype(np.uint8) | |
outputs.append(x) | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
imageio.mimsave(path, outputs, fps=fps) | |
def save_images_grid(images: torch.Tensor, path: str): | |
assert images.shape[2] == 1 # no time dimension | |
images = images.squeeze(2) | |
grid = torchvision.utils.make_grid(images) | |
grid = (grid * 255).numpy().transpose(1, 2, 0).astype(np.uint8) | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
Image.fromarray(grid).save(path) | |
# DDIM Inversion | |
def init_prompt(prompt, pipeline): | |
uncond_input = pipeline.tokenizer( | |
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length, | |
return_tensors="pt" | |
) | |
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0] | |
text_input = pipeline.tokenizer( | |
[prompt], | |
padding="max_length", | |
max_length=pipeline.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0] | |
context = torch.cat([uncond_embeddings, text_embeddings]) | |
return context | |
def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, | |
sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler): | |
timestep, next_timestep = min( | |
timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep | |
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod | |
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep] | |
beta_prod_t = 1 - alpha_prod_t | |
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 | |
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output | |
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction | |
return next_sample | |
def get_noise_pred_single(latents, t, context, unet): | |
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"] | |
return noise_pred | |
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt): | |
context = init_prompt(prompt, pipeline) | |
uncond_embeddings, cond_embeddings = context.chunk(2) | |
all_latent = [latent] | |
latent = latent.clone().detach() | |
for i in tqdm(range(num_inv_steps)): | |
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1] | |
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet) | |
latent = next_step(noise_pred, t, latent, ddim_scheduler) | |
all_latent.append(latent) | |
return all_latent | |
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""): | |
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt) | |
return ddim_latents | |
def video2images(path, step=4, length=16, start=0): | |
reader = imageio.get_reader(path) | |
frames = [] | |
for frame in reader: | |
frames.append(np.array(frame)) | |
frames = frames[start::step][:length] | |
return frames | |
def images2video(video, path, fps=8): | |
imageio.mimsave(path, video, fps=fps) | |
return | |
tensor_interpolation = None | |
def get_tensor_interpolation_method(): | |
return tensor_interpolation | |
def set_tensor_interpolation_method(is_slerp): | |
global tensor_interpolation | |
tensor_interpolation = slerp if is_slerp else linear | |
def linear(v1, v2, t): | |
return (1.0 - t) * v1 + t * v2 | |
def slerp( | |
v0: torch.Tensor, v1: torch.Tensor, t: float, DOT_THRESHOLD: float = 0.9995 | |
) -> torch.Tensor: | |
u0 = v0 / v0.norm() | |
u1 = v1 / v1.norm() | |
dot = (u0 * u1).sum() | |
if dot.abs() > DOT_THRESHOLD: | |
#logger.info(f'warning: v0 and v1 close to parallel, using linear interpolation instead.') | |
return (1.0 - t) * v0 + t * v1 | |
omega = dot.acos() | |
return (((1.0 - t) * omega).sin() * v0 + (t * omega).sin() * v1) / omega.sin() |