File size: 15,256 Bytes
f1ff127
72c5c44
e19537b
ed0b09a
0bcff6d
6c5c07b
e19537b
 
72c5c44
0bcff6d
e19537b
 
f1ff127
e19537b
 
0bcff6d
ed0b09a
f1ff127
72c5c44
ed0b09a
 
0bcff6d
e19537b
 
72c5c44
f1ff127
0bcff6d
6c5c07b
 
 
 
 
 
 
ed0b09a
6c5c07b
 
 
ed0b09a
6c5c07b
 
 
 
 
ed0b09a
6c5c07b
 
ed0b09a
6c5c07b
 
 
ed0b09a
6c5c07b
 
 
 
 
 
 
 
 
ed0b09a
6c5c07b
 
 
ed0b09a
6c5c07b
 
 
 
ed0b09a
6c5c07b
 
 
 
ed0b09a
6c5c07b
 
 
 
ed0b09a
6c5c07b
 
 
 
 
 
 
 
e19537b
6c5c07b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed0b09a
6c5c07b
ed0b09a
f1ff127
6c5c07b
0bcff6d
6c5c07b
0bcff6d
 
 
 
e19537b
 
5a7020e
6c5c07b
0bcff6d
e19537b
 
5a7020e
6c5c07b
0bcff6d
6c5c07b
0bcff6d
6c5c07b
f1ff127
72c5c44
 
6c5c07b
 
 
0bcff6d
72c5c44
 
 
e19537b
 
 
e5dda1f
72c5c44
 
e5dda1f
72c5c44
e19537b
 
 
 
 
f1ff127
6c5c07b
2493165
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import gradio as gr
from model import models
from multit2i import (load_models, infer_fn, infer_rand_fn, save_gallery,
    change_model, warm_model, get_model_info_md, loaded_models, warm_models,
    get_positive_prefix, get_positive_suffix, get_negative_prefix, get_negative_suffix,
    get_recom_prompt_type, set_recom_prompt_preset, get_tag_type, randomize_seed, translate_to_en)
from tagger.tagger import (predict_tags_wd, remove_specific_prompt, convert_danbooru_to_e621_prompt,
    insert_recom_prompt, compose_prompt_to_copy)
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
from tagger.v2 import V2_ALL_MODELS, v2_random_prompt
from tagger.utils import (V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS,
    V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)

max_images = 6
MAX_SEED = 2**32-1
load_models(models)
warm_models(models[0:max_images])

css = """

.title { font-size: 3em; align-items: center; text-align: center; }

.info { align-items: center; text-align: center; }

.model_info { text-align: center; }

.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }

.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }

"""

with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
    with gr.Tab("Image Generator"):
        with gr.Row():
            with gr.Column(scale=10): 
                with gr.Group():
                    with gr.Accordion("Prompt from Image File", open=False):
                        tagger_image = gr.Image(label="Input image", type="pil", format="png", sources=["upload", "clipboard"], height=256)
                        with gr.Accordion(label="Advanced options", open=False):
                            with gr.Row(equal_height=True):
                                tagger_general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
                                tagger_character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
                                tagger_tag_type = gr.Radio(label="Convert tags to", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
                            with gr.Row(equal_height=True):
                                tagger_recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)  
                                tagger_keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
                        tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
                        tagger_generate_from_image = gr.Button(value="Generate Tags from Image", variant="secondary")
                    with gr.Accordion("Prompt Transformer", open=False):
                        with gr.Row(equal_height=True):
                            v2_character = gr.Textbox(label="Character", placeholder="hatsune miku", scale=2)
                            v2_series = gr.Textbox(label="Series", placeholder="vocaloid", scale=2)
                        with gr.Row(equal_height=True):
                            v2_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="sfw")
                            v2_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square", visible=False)
                            v2_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="long")
                        with gr.Row(equal_height=True):
                            v2_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")                    
                            v2_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
                            v2_tag_type = gr.Radio(label="Tag Type", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru", visible=False)
                        v2_model = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
                        v2_copy = gr.Button(value="Copy to clipboard", variant="secondary", size="sm", interactive=False)
                        random_prompt = gr.Button(value="Extend 🎲", variant="secondary")
                    prompt = gr.Text(label="Prompt", lines=2, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
                    with gr.Accordion("Advanced options", open=False):
                        neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="")
                        with gr.Row(equal_height=True):
                            width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                            height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                            steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                        with gr.Row(equal_height=True):
                            cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                            seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                            seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
                        recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
                        with gr.Row(equal_height=True):
                            positive_prefix = gr.CheckboxGroup(label="Use Positive Prefix", choices=get_positive_prefix(), value=[])
                            positive_suffix = gr.CheckboxGroup(label="Use Positive Suffix", choices=get_positive_suffix(), value=["Common"])
                            negative_prefix = gr.CheckboxGroup(label="Use Negative Prefix", choices=get_negative_prefix(), value=[])
                            negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"])
                    with gr.Row(equal_height=True):
                        image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=2)
                        trans_prompt = gr.Button(value="Translate 📝", variant="secondary", size="sm", scale=2)
                        clear_prompt = gr.Button(value="Clear 🗑️", variant="secondary", size="sm", scale=1)
                    
                with gr.Row(equal_height=True):
                    run_button = gr.Button("Generate Image", variant="primary", scale=6)
                    random_button = gr.Button("Random Model 🎲", variant="secondary", scale=3)
                    #stop_button = gr.Button('Stop', variant="stop", interactive=False, scale=1)
                with gr.Group():
                    model_name = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0], allow_custom_value=True)
                    model_info = gr.Markdown(value=get_model_info_md(list(loaded_models.keys())[0]), elem_classes="model_info")
            with gr.Column(scale=10): 
                with gr.Group():
                    with gr.Row():
                        output = [gr.Image(label='', elem_classes="output", type="filepath", format="png",
                                show_download_button=True, show_share_button=False, show_label=False,
                                interactive=False, min_width=80, visible=True, width=112, height=112) for _ in range(max_images)]
                with gr.Group():
                    results = gr.Gallery(label="Gallery", elem_classes="gallery", interactive=False, show_download_button=True, show_share_button=False,
                                        container=True, format="png", object_fit="cover", columns=2, rows=2)
                    image_files = gr.Files(label="Download", interactive=False)
                    clear_results = gr.Button("Clear Gallery / Download 🗑️", variant="secondary")
        with gr.Column(): 
            examples = gr.Examples(
                examples = [
                    ["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
                    ["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
                    ["kafuu chino, 1girl, solo"],
                    ["1girl"],
                    ["beautiful sunset"],
                ],
                inputs=[prompt],
                cache_examples=False,
            )
    with gr.Tab("PNG Info"):
        def extract_exif_data(image):
            if image is None: return ""
            try:
                metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment']
                for key in metadata_keys:
                    if key in image.info:
                        return image.info[key]
                return str(image.info)
            except Exception as e:
                return f"Error extracting metadata: {str(e)}"
        with gr.Row():
            with gr.Column():
                image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])
            with gr.Column():
                result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99)
                image_metadata.change(
                    fn=extract_exif_data,
                    inputs=[image_metadata],
                    outputs=[result_metadata],
                )
    gr.Markdown(
        f"""This demo was created in reference to the following demos.<br>

[Nymbo/Flood](https://huggingface.co/spaces/Nymbo/Flood), 

[Yntec/ToyWorldXL](https://huggingface.co/spaces/Yntec/ToyWorldXL), 

[Yntec/Diffusion80XX](https://huggingface.co/spaces/Yntec/Diffusion80XX).

        """, elem_classes="info")
    gr.DuplicateButton(value="Duplicate Space")
    gr.Markdown(f"Just a few edits to *model.py* are all it takes to complete your own collection.", elem_classes="info")

    #gr.on(triggers=[run_button.click, prompt.submit, random_button.click], fn=lambda: gr.update(interactive=True), inputs=None, outputs=stop_button, show_api=False)
    model_name.change(change_model, [model_name], [model_info], queue=False, show_api=False)\
    .success(warm_model, [model_name], None, queue=False, show_api=False)
    for i, o in enumerate(output):
        img_i = gr.Number(i, visible=False)
        image_num.change(lambda i, n: gr.update(visible = (i < n)), [img_i, image_num], o, show_api=False)
        gen_event = gr.on(triggers=[run_button.click, prompt.submit],
         fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
         inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
                  positive_prefix, positive_suffix, negative_prefix, negative_suffix],
         outputs=[o], queue=False, show_api=False)  # Be sure to delete ", queue=False" when activating the stop button
        gen_event2 = gr.on(triggers=[random_button.click],
         fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_rand_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
         inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
                  positive_prefix, positive_suffix, negative_prefix, negative_suffix],
         outputs=[o], queue=False, show_api=False)  # Be sure to delete ", queue=False" when activating the stop button
        o.change(save_gallery, [o, results], [results, image_files], show_api=False)
        #stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event, gen_event2], show_api=False)

    clear_prompt.click(lambda: (None, None, None, None), None, [prompt, neg_prompt, v2_character, v2_series], queue=False, show_api=False)
    clear_results.click(lambda: (None, None), None, [results, image_files], queue=False, show_api=False)
    recom_prompt_preset.change(set_recom_prompt_preset, [recom_prompt_preset],
     [positive_prefix, positive_suffix, negative_prefix, negative_suffix], queue=False, show_api=False)
    seed_rand.click(randomize_seed, None, [seed], queue=False, show_api=False)
    trans_prompt.click(translate_to_en, [prompt], [prompt], queue=False, show_api=False)\
    .then(translate_to_en, [neg_prompt], [neg_prompt], queue=False, show_api=False)

    random_prompt.click(
        v2_random_prompt, [prompt, v2_series, v2_character, v2_rating, v2_aspect_ratio, v2_length,
          v2_identity, v2_ban_tags, v2_model], [prompt, v2_series, v2_character], show_api=False,
    ).success(get_tag_type, [positive_prefix, positive_suffix, negative_prefix, negative_suffix], [v2_tag_type], queue=False, show_api=False
    ).success(convert_danbooru_to_e621_prompt, [prompt, v2_tag_type], [prompt], queue=False, show_api=False)
    tagger_generate_from_image.click(lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
    ).success(
        predict_tags_wd,
        [tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
        [v2_series, v2_character, prompt, v2_copy],
        show_api=False,
    ).success(predict_tags_fl2_sd3, [tagger_image, prompt, tagger_algorithms], [prompt], show_api=False,
    ).success(remove_specific_prompt, [prompt, tagger_keep_tags], [prompt], queue=False, show_api=False,
    ).success(convert_danbooru_to_e621_prompt, [prompt, tagger_tag_type], [prompt], queue=False, show_api=False,
    ).success(insert_recom_prompt, [prompt, neg_prompt, tagger_recom_prompt], [prompt, neg_prompt], queue=False, show_api=False,
    ).success(compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False)

#demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(max_threads=400, ssr_mode=False)