File size: 12,713 Bytes
ae677ba
f64f93f
d90a503
9cf81bb
 
d90a503
 
 
f64f93f
9cf81bb
d90a503
 
7099cd8
d90a503
 
9cf81bb
ae677ba
f64f93f
9cf81bb
d90a503
 
f64f93f
ae677ba
9cf81bb
d90a503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cf81bb
d90a503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cf81bb
d90a503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cf81bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27c7a74
ae677ba
9cf81bb
 
 
 
 
 
 
d90a503
 
27c7a74
9cf81bb
 
d90a503
 
27c7a74
9cf81bb
 
 
 
 
ae677ba
f64f93f
 
9cf81bb
f64f93f
 
 
d90a503
 
 
07d1196
f64f93f
 
07d1196
f64f93f
d90a503
 
 
 
 
ae677ba
d90a503
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
from model import models
from multit2i import (load_models, infer_fn, infer_rand_fn, save_gallery,
    change_model, warm_model, get_model_info_md, loaded_models,
    get_positive_prefix, get_positive_suffix, get_negative_prefix, get_negative_suffix,
    get_recom_prompt_type, set_recom_prompt_preset, get_tag_type)
from tagger.tagger import (predict_tags_wd, remove_specific_prompt, convert_danbooru_to_e621_prompt,
    insert_recom_prompt, compose_prompt_to_copy)
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
from tagger.v2 import V2_ALL_MODELS, v2_random_prompt
from tagger.utils import (V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS,
    V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)

max_images = 6
MAX_SEED = 2**32-1
load_models(models)

css = """

.model_info { text-align: center; }

.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }

.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }

"""

with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
    with gr.Row():
        with gr.Column(scale=10): 
            with gr.Group():
                with gr.Accordion("Prompt from Image File", open=False):
                    tagger_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
                    with gr.Accordion(label="Advanced options", open=False):
                        with gr.Row():
                            tagger_general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
                            tagger_character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
                            tagger_tag_type = gr.Radio(label="Convert tags to", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
                        with gr.Row():
                            tagger_recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)  
                            tagger_keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
                    tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
                    tagger_generate_from_image = gr.Button(value="Generate Tags from Image", variant="secondary")
                with gr.Accordion("Prompt Transformer", open=False):
                    with gr.Row():
                        v2_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="sfw")
                        v2_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square", visible=False)
                        v2_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="long")
                    with gr.Row():
                        v2_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")                    
                        v2_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
                        v2_tag_type = gr.Radio(label="Tag Type", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru", visible=False)
                    v2_model = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
                    v2_copy = gr.Button(value="Copy to clipboard", variant="secondary", size="sm", interactive=False)
                with gr.Row():
                    v2_character = gr.Textbox(label="Character", placeholder="hatsune miku", scale=2)
                    v2_series = gr.Textbox(label="Series", placeholder="vocaloid", scale=2)
                    random_prompt = gr.Button(value="Extend Prompt 🎲", variant="secondary", size="sm", scale=1)
                    clear_prompt = gr.Button(value="Clear Prompt πŸ—‘οΈ", variant="secondary", size="sm", scale=1)
                prompt = gr.Text(label="Prompt", lines=2, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
                with gr.Accordion("Advanced options", open=False):
                    neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="")
                    with gr.Row():
                        width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                        height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                    with gr.Row():
                        steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                        cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                        seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                    recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
                    with gr.Row():
                        positive_prefix = gr.CheckboxGroup(label="Use Positive Prefix", choices=get_positive_prefix(), value=[])
                        positive_suffix = gr.CheckboxGroup(label="Use Positive Suffix", choices=get_positive_suffix(), value=["Common"])
                        negative_prefix = gr.CheckboxGroup(label="Use Negative Prefix", choices=get_negative_prefix(), value=[])
                        negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"])

                image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=1)
            with gr.Row():
                run_button = gr.Button("Generate Image", variant="primary", scale=6)
                random_button = gr.Button("Random Model 🎲", variant="secondary", scale=3)
                stop_button = gr.Button('Stop', variant="stop", interactive=False, scale=1)
            with gr.Group():
                model_name = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0], allow_custom_value=True)
                model_info = gr.Markdown(value=get_model_info_md(list(loaded_models.keys())[0]), elem_classes="model_info")
        with gr.Column(scale=10): 
            with gr.Group():
                with gr.Row():
                    output = [gr.Image(label='', elem_classes="output", type="filepath", format="png",
                            show_download_button=True, show_share_button=False, show_label=False,
                            interactive=False, min_width=80, visible=True) for _ in range(max_images)]
            with gr.Group():
                results = gr.Gallery(label="Gallery", elem_classes="gallery", interactive=False, show_download_button=True, show_share_button=False,
                                    container=True, format="png", object_fit="cover", columns=2, rows=2)
                image_files = gr.Files(label="Download", interactive=False)
                clear_results = gr.Button("Clear Gallery / Download πŸ—‘οΈ", variant="secondary")
    with gr.Column(): 
        examples = gr.Examples(
            examples = [
                ["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
                ["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
                ["kafuu chino, 1girl, solo"],
                ["1girl"],
                ["beautiful sunset"],
            ],
            inputs=[prompt],
        )
        gr.Markdown(
            f"""This demo was created in reference to the following demos.<br>

    [Nymbo/Flood](https://huggingface.co/spaces/Nymbo/Flood), 

    [Yntec/ToyWorldXL](https://huggingface.co/spaces/Yntec/ToyWorldXL), 

    [Yntec/Diffusion80XX](https://huggingface.co/spaces/Yntec/Diffusion80XX).

                """
        )
        gr.DuplicateButton(value="Duplicate Space")
        gr.Markdown(f"Just a few edits to *model.py* are all it takes to complete your own collection.")

    gr.on(triggers=[run_button.click, prompt.submit, random_button.click], fn=lambda: gr.update(interactive=True), inputs=None, outputs=stop_button, show_api=False)
    model_name.change(change_model, [model_name], [model_info], queue=False, show_api=False)\
    .success(warm_model, [model_name], None, queue=True, show_api=False)
    for i, o in enumerate(output):
        img_i = gr.Number(i, visible=False)
        image_num.change(lambda i, n: gr.update(visible = (i < n)), [img_i, image_num], o, show_api=False)
        gen_event = gr.on(triggers=[run_button.click, prompt.submit],
         fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
         inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
                  positive_prefix, positive_suffix, negative_prefix, negative_suffix],
         outputs=[o], queue=True, show_api=False)
        gen_event2 = gr.on(triggers=[random_button.click],
         fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_rand_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
         inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
                  positive_prefix, positive_suffix, negative_prefix, negative_suffix],
         outputs=[o], queue=True, show_api=False)
        o.change(save_gallery, [o, results], [results, image_files], show_api=False)
        stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event, gen_event2], show_api=False)

    clear_prompt.click(lambda: None, None, [prompt], queue=False, show_api=False)
    clear_results.click(lambda: (None, None), None, [results, image_files], queue=False, show_api=False)
    recom_prompt_preset.change(set_recom_prompt_preset, [recom_prompt_preset],
     [positive_prefix, positive_suffix, negative_prefix, negative_suffix], queue=False, show_api=False)

    random_prompt.click(
        v2_random_prompt, [prompt, v2_series, v2_character, v2_rating, v2_aspect_ratio, v2_length,
          v2_identity, v2_ban_tags, v2_model], [prompt, v2_series, v2_character], show_api=False,
    ).success(get_tag_type, [positive_prefix, positive_suffix, negative_prefix, negative_suffix], [v2_tag_type], queue=False, show_api=False
    ).success(convert_danbooru_to_e621_prompt, [prompt, v2_tag_type], [prompt], queue=False, show_api=False)
    tagger_generate_from_image.click(lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
    ).success(
        predict_tags_wd,
        [tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
        [v2_series, v2_character, prompt, v2_copy],
        show_api=False,
    ).success(predict_tags_fl2_sd3, [tagger_image, prompt, tagger_algorithms], [prompt], show_api=False,
    ).success(remove_specific_prompt, [prompt, tagger_keep_tags], [prompt], queue=False, show_api=False,
    ).success(convert_danbooru_to_e621_prompt, [prompt, tagger_tag_type], [prompt], queue=False, show_api=False,
    ).success(insert_recom_prompt, [prompt, neg_prompt, tagger_recom_prompt], [prompt, neg_prompt], queue=False, show_api=False,
    ).success(compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False)

demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(max_threads=400)