Spaces:
Running
Running
import gradio as gr | |
from convert_url_to_diffusers_sd_gr import ( | |
convert_url_to_diffusers_repo_sd, | |
SCHEDULER_CONFIG_MAP, | |
) | |
vaes = [ | |
"", | |
"https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt", | |
"https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt", | |
] | |
loras = [ | |
"", | |
"https://huggingface.co/SPO-Diffusion-Models/SPO-SD-v1-5_4k-p_10ep_LoRA/blob/main/spo-sd-v1-5_4k-p_10ep_lora_diffusers.safetensors", | |
] | |
schedulers = list(SCHEDULER_CONFIG_MAP.keys()) | |
preset_dict = { | |
"Default": [True, "", "Euler", "", 1.0, "", 1.0, "", 1.0, "", 1.0, "", 1.0, "v1", 768, "ema"], | |
"Bake in standard VAE": [True, "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt", | |
"Euler", "", 1.0, "", 1.0, "", 1.0, "", 1.0, "", 1.0, "v1", 768, "ema"], | |
} | |
def set_presets(preset: str="Default"): | |
p = [] | |
if preset in preset_dict.keys(): p = preset_dict[preset] | |
else: p = preset_dict["Default"] | |
return p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15] | |
css = """ | |
.title { font-size: 3em; align-items: center; text-align: center; } | |
.info { align-items: center; text-align: center; } | |
.block.result { margin: 1em 0; padding: 1em; box-shadow: 0 0 3px 3px #664422, 0 0 3px 2px #664422 inset; border-radius: 6px; background: #665544; } | |
""" | |
with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css, delete_cache=(60, 3600)) as demo: | |
gr.Markdown("# Download and convert any Stable Diffusion 1.5 / 2.0 safetensors to Diffusers and create your repo", elem_classes="title") | |
gr.Markdown( | |
f""" | |
- [A CLI version of this tool (without uploading-related function) is available here](https://huggingface.co/spaces/John6666/sd-to-diffusers-v2/tree/main/local). | |
**⚠️IMPORTANT NOTICE⚠️**<br> | |
From an information security standpoint, it is dangerous to expose your access token or key to others. | |
If you do use it, I recommend that you duplicate this space on your own account before doing so. | |
Keys and tokens could be set to SECRET (HF_TOKEN, CIVITAI_API_KEY) if it's placed in your own space. | |
It saves you the trouble of typing them in.<br> | |
<br> | |
**The steps are the following**: | |
- Paste a write-access token from [hf.co/settings/tokens](https://huggingface.co/settings/tokens). | |
- Input a model download url from the Hub or Civitai or other sites. | |
- If you want to download a model from Civitai, paste a Civitai API Key. | |
- Input your HF user ID. e.g. 'yourid'. | |
- Input your new repo name. If empty, auto-complete. e.g. 'newrepo'. | |
- Set the parameters. If not sure, just use the defaults. | |
- Click "Submit". | |
- Patiently wait until the output changes. It takes approximately 1 minutes (downloading from HF). | |
""" | |
) | |
with gr.Column(): | |
with gr.Group(): | |
dl_url = gr.Textbox(label="URL to download", placeholder="https://huggingface.co/SG161222/RealVisXL_V4.0/blob/main/RealVisXL_V4.0.safetensors", value="", max_lines=1) | |
with gr.Row(): | |
hf_user = gr.Textbox(label="Your HF user ID", placeholder="username", value="", max_lines=1) | |
hf_repo = gr.Textbox(label="New repo name", placeholder="reponame", info="If empty, auto-complete", value="", max_lines=1) | |
with gr.Row(): | |
hf_token = gr.Textbox(label="Your HF write token", placeholder="hf_...", value="", max_lines=1) | |
civitai_key = gr.Textbox(label="Your Civitai API Key (Optional)", info="If you download model from Civitai...", placeholder="", value="", max_lines=1) | |
with gr.Row(): | |
is_upload_sf = gr.Checkbox(label="Upload single safetensors file into new repo", value=False) | |
is_private = gr.Checkbox(label="Create private repo", value=True) | |
presets = gr.Radio(label="Presets", choices=list(preset_dict.keys()), value="Default") | |
with gr.Accordion("Advanced settings", open=False): | |
with gr.Row(): | |
is_half = gr.Checkbox(label="Half precision", value=True) | |
model_type = gr.Radio(label="Model type", choices=["v1", "v2"], value="v1") | |
sample_size = gr.Radio(label="Sample size (px)", choices=[512, 768], value=768) | |
ema = gr.Radio(label="Extract EMA or non-EMA?", choices=["ema", "non-ema"], value="ema") | |
with gr.Row(): | |
vae = gr.Dropdown(label="VAE", choices=vaes, value="", allow_custom_value=True) | |
scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=schedulers, value="Euler") | |
with gr.Row(): | |
with gr.Column(): | |
lora1 = gr.Dropdown(label="LoRA1", choices=loras, value="", allow_custom_value=True, min_width=320) | |
lora1s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA1 weight scale") | |
with gr.Column(): | |
lora2 = gr.Dropdown(label="LoRA2", choices=loras, value="", allow_custom_value=True, min_width=320) | |
lora2s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA2 weight scale") | |
with gr.Column(): | |
lora3 = gr.Dropdown(label="LoRA3", choices=loras, value="", allow_custom_value=True, min_width=320) | |
lora3s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA3 weight scale") | |
with gr.Column(): | |
lora4 = gr.Dropdown(label="LoRA4", choices=loras, value="", allow_custom_value=True, min_width=320) | |
lora4s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA4 weight scale") | |
with gr.Column(): | |
lora5 = gr.Dropdown(label="LoRA5", choices=loras, value="", allow_custom_value=True, min_width=320) | |
lora5s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA5 weight scale") | |
run_button = gr.Button(value="Submit") | |
repo_urls = gr.CheckboxGroup(visible=False, choices=[], value=None) | |
output_md = gr.Markdown(label="Output", value="<br><br>", elem_classes="result") | |
gr.DuplicateButton(value="Duplicate Space") | |
gr.on( | |
triggers=[run_button.click], | |
fn=convert_url_to_diffusers_repo_sd, | |
inputs=[dl_url, hf_user, hf_repo, hf_token, civitai_key, is_private, is_upload_sf, repo_urls, is_half, vae, scheduler, | |
lora1, lora1s, lora2, lora2s, lora3, lora3s, lora4, lora4s, lora5, lora5s, | |
model_type, sample_size, ema], | |
outputs=[repo_urls, output_md], | |
) | |
presets.change( | |
fn=set_presets, | |
inputs=[presets], | |
outputs=[is_half, vae, scheduler, lora1, lora1s, lora2, lora2s, lora3, lora3s, lora4, lora4s, lora5, lora5s, | |
model_type, sample_size, ema], | |
queue=False, | |
) | |
demo.queue() | |
demo.launch() | |