John6666 commited on
Commit
b8a2e65
1 Parent(s): 6e9dc0c

Upload 5 files

Browse files
README.md CHANGED
@@ -1,12 +1,13 @@
1
- ---
2
- title: Sd To Diffusers V2
3
- emoji: 👁
4
- colorFrom: blue
5
- colorTo: green
6
- sdk: gradio
7
- sdk_version: 4.38.1
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
1
+ ---
2
+ title: SD To Diffusers V2
3
+ emoji: 🎨➡️🧨
4
+ colorFrom: indigo
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 4.38.1
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from convert_url_to_diffusers_sd_gr import (
3
+ convert_url_to_diffusers_repo,
4
+ SCHEDULER_CONFIG_MAP,
5
+ )
6
+
7
+ vaes = [
8
+ "",
9
+ "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt",
10
+ "https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt",
11
+ ]
12
+ loras = [
13
+ "",
14
+ "https://huggingface.co/SPO-Diffusion-Models/SPO-SD-v1-5_4k-p_10ep_LoRA/blob/main/spo-sd-v1-5_4k-p_10ep_lora_diffusers.safetensors",
15
+ ]
16
+ schedulers = list(SCHEDULER_CONFIG_MAP.keys())
17
+
18
+ css = """"""
19
+
20
+ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", css=css) as demo:
21
+ gr.Markdown("# Download and convert any Stable Diffusion 1.5 / 2.0 safetensors to Diffusers and create your repo")
22
+ gr.Markdown(
23
+ f"""
24
+ **⚠️IMPORTANT NOTICE⚠️**<br>
25
+ From an information security standpoint, it is dangerous to expose your access token or key to others.
26
+ If you do use it, I recommend that you duplicate this space on your own account before doing so.
27
+ Keys and tokens could be set to SECRET (HF_TOKEN, CIVITAI_API_KEY) if it's placed in your own space.
28
+ It saves you the trouble of typing them in.<br>
29
+ <br>
30
+ **The steps are the following**:
31
+ - Paste a write-access token from [hf.co/settings/tokens](https://huggingface.co/settings/tokens).
32
+ - Input a model download url from the Hub or Civitai or other sites.
33
+ - If you want to download a model from Civitai, paste a Civitai API Key.
34
+ - Input your new repo name. e.g. 'yourid/newrepo'.
35
+ - Set the parameters. If not sure, just use the defaults.
36
+ - Click "Submit".
37
+ - Patiently wait until the output changes.
38
+ """
39
+ )
40
+ with gr.Column():
41
+ dl_url = gr.Textbox(label="URL to download", placeholder="https://...", value="", max_lines=1)
42
+ repo_id = gr.Textbox(label="Your New Repo ID", placeholder="author/model", value="", max_lines=1)
43
+ hf_token = gr.Textbox(label="Your HF write token", placeholder="", value="", max_lines=1)
44
+ civitai_key = gr.Textbox(label="Your Civitai API Key (Optional)", info="If you download model from Civitai...", placeholder="", value="", max_lines=1)
45
+ is_half = gr.Checkbox(label="Half precision", value=True)
46
+ model_type = gr.Radio(label="Model type", choices=["v1", "v2"])
47
+ sample_size = gr.Radio(label="Sample size (px)", choices=[512, 768]),
48
+ ema = gr.Radio(label="Extract EMA or non-EMA?", choices=["ema", "non-ema"], value="ema"),
49
+ vae = gr.Dropdown(label="VAE", choices=vaes, value="", allow_custom_value=True)
50
+ scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=schedulers, value="Euler a")
51
+ lora1 = gr.Dropdown(label="LoRA1", choices=loras, value="", allow_custom_value=True)
52
+ lora1s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA1 weight scale")
53
+ lora2 = gr.Dropdown(label="LoRA2", choices=loras, value="", allow_custom_value=True)
54
+ lora2s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA2 weight scale")
55
+ lora3 = gr.Dropdown(label="LoRA3", choices=loras, value="", allow_custom_value=True)
56
+ lora3s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA3 weight scale")
57
+ lora4 = gr.Dropdown(label="LoRA4", choices=loras, value="", allow_custom_value=True)
58
+ lora4s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA4 weight scale")
59
+ lora5 = gr.Dropdown(label="LoRA5", choices=loras, value="", allow_custom_value=True)
60
+ lora5s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA5 weight scale")
61
+ run_button = gr.Button(value="Submit")
62
+ repo_urls = gr.CheckboxGroup(visible=False, choices=[], value=None)
63
+ output_md = gr.Markdown(label="Output")
64
+
65
+ gr.on(
66
+ triggers=[run_button.click],
67
+ fn=convert_url_to_diffusers_repo,
68
+ inputs=[dl_url, repo_id, hf_token, civitai_key, repo_urls, is_half, vae, scheduler,
69
+ lora1, lora1s, lora2, lora2s, lora3, lora3s, lora4, lora4s, lora5, lora5s,
70
+ model_type, sample_size, ema],
71
+ outputs=[repo_urls, output_md],
72
+ )
73
+
74
+ demo.queue()
75
+ demo.launch()
convert_url_to_diffusers_sd.py ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from pathlib import Path
3
+ import os
4
+ import torch
5
+ from diffusers import StableDiffusionPipeline, AutoencoderKL
6
+ # also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
7
+
8
+
9
+ def list_sub(a, b):
10
+ return [e for e in a if e not in b]
11
+
12
+
13
+ def is_repo_name(s):
14
+ import re
15
+ return re.fullmatch(r'^[^/\.,\s]+?/[^/\.,\s]+?$', s)
16
+
17
+
18
+ def download_thing(directory, url, civitai_api_key=""):
19
+ url = url.strip()
20
+ if "drive.google.com" in url:
21
+ original_dir = os.getcwd()
22
+ os.chdir(directory)
23
+ os.system(f"gdown --fuzzy {url}")
24
+ os.chdir(original_dir)
25
+ elif "huggingface.co" in url:
26
+ url = url.replace("?download=true", "")
27
+ if "/blob/" in url:
28
+ url = url.replace("/blob/", "/resolve/")
29
+ os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
30
+ else:
31
+ os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
32
+ elif "civitai.com" in url:
33
+ if "?" in url:
34
+ url = url.split("?")[0]
35
+ if civitai_api_key:
36
+ url = url + f"?token={civitai_api_key}"
37
+ os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
38
+ else:
39
+ print("You need an API key to download Civitai models.")
40
+ else:
41
+ os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
42
+
43
+
44
+ def get_local_model_list(dir_path):
45
+ model_list = []
46
+ valid_extensions = ('.safetensors', '.ckpt', '.bin', '.pt', '.pth')
47
+ for file in Path(dir_path).glob("*"):
48
+ if file.suffix in valid_extensions:
49
+ file_path = str(Path(f"{dir_path}/{file.name}"))
50
+ model_list.append(file_path)
51
+ return model_list
52
+
53
+
54
+ def get_download_file(temp_dir, url, civitai_key):
55
+ if not "http" in url and is_repo_name(url) and not Path(url).exists():
56
+ print(f"Use HF Repo: {url}")
57
+ new_file = url
58
+ elif not "http" in url and Path(url).exists():
59
+ print(f"Use local file: {url}")
60
+ new_file = url
61
+ elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
62
+ print(f"File to download alreday exists: {url}")
63
+ new_file = f"{temp_dir}/{url.split('/')[-1]}"
64
+ else:
65
+ print(f"Start downloading: {url}")
66
+ before = get_local_model_list(temp_dir)
67
+ try:
68
+ download_thing(temp_dir, url.strip(), civitai_key)
69
+ except Exception:
70
+ print(f"Download failed: {url}")
71
+ return ""
72
+ after = get_local_model_list(temp_dir)
73
+ new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
74
+ if not new_file:
75
+ print(f"Download failed: {url}")
76
+ return ""
77
+ print(f"Download completed: {url}")
78
+ return new_file
79
+
80
+
81
+ from diffusers import (
82
+ DPMSolverMultistepScheduler,
83
+ DPMSolverSinglestepScheduler,
84
+ KDPM2DiscreteScheduler,
85
+ EulerDiscreteScheduler,
86
+ EulerAncestralDiscreteScheduler,
87
+ HeunDiscreteScheduler,
88
+ LMSDiscreteScheduler,
89
+ DDIMScheduler,
90
+ DEISMultistepScheduler,
91
+ UniPCMultistepScheduler,
92
+ LCMScheduler,
93
+ PNDMScheduler,
94
+ KDPM2AncestralDiscreteScheduler,
95
+ DPMSolverSDEScheduler,
96
+ EDMDPMSolverMultistepScheduler,
97
+ DDPMScheduler,
98
+ EDMEulerScheduler,
99
+ TCDScheduler,
100
+ )
101
+
102
+
103
+ SCHEDULER_CONFIG_MAP = {
104
+ "DPM++ 2M": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False}),
105
+ "DPM++ 2M Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
106
+ "DPM++ 2M SDE": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
107
+ "DPM++ 2M SDE Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}),
108
+ "DPM++ 2S": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False}),
109
+ "DPM++ 2S Karras": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
110
+ "DPM++ 1S": (DPMSolverMultistepScheduler, {"solver_order": 1}),
111
+ "DPM++ 1S Karras": (DPMSolverMultistepScheduler, {"solver_order": 1, "use_karras_sigmas": True}),
112
+ "DPM++ 3M": (DPMSolverMultistepScheduler, {"solver_order": 3}),
113
+ "DPM++ 3M Karras": (DPMSolverMultistepScheduler, {"solver_order": 3, "use_karras_sigmas": True}),
114
+ "DPM++ SDE": (DPMSolverSDEScheduler, {"use_karras_sigmas": False}),
115
+ "DPM++ SDE Karras": (DPMSolverSDEScheduler, {"use_karras_sigmas": True}),
116
+ "DPM2": (KDPM2DiscreteScheduler, {}),
117
+ "DPM2 Karras": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
118
+ "DPM2 a": (KDPM2AncestralDiscreteScheduler, {}),
119
+ "DPM2 a Karras": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
120
+ "Euler": (EulerDiscreteScheduler, {}),
121
+ "Euler a": (EulerAncestralDiscreteScheduler, {}),
122
+ "Euler trailing": (EulerDiscreteScheduler, {"timestep_spacing": "trailing", "prediction_type": "sample"}),
123
+ "Euler a trailing": (EulerAncestralDiscreteScheduler, {"timestep_spacing": "trailing"}),
124
+ "Heun": (HeunDiscreteScheduler, {}),
125
+ "Heun Karras": (HeunDiscreteScheduler, {"use_karras_sigmas": True}),
126
+ "LMS": (LMSDiscreteScheduler, {}),
127
+ "LMS Karras": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
128
+ "DDIM": (DDIMScheduler, {}),
129
+ "DDIM trailing": (DDIMScheduler, {"timestep_spacing": "trailing"}),
130
+ "DEIS": (DEISMultistepScheduler, {}),
131
+ "UniPC": (UniPCMultistepScheduler, {}),
132
+ "UniPC Karras": (UniPCMultistepScheduler, {"use_karras_sigmas": True}),
133
+ "PNDM": (PNDMScheduler, {}),
134
+ "Euler EDM": (EDMEulerScheduler, {}),
135
+ "Euler EDM Karras": (EDMEulerScheduler, {"use_karras_sigmas": True}),
136
+ "DPM++ 2M EDM": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
137
+ "DPM++ 2M EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
138
+ "DDPM": (DDPMScheduler, {}),
139
+
140
+ "DPM++ 2M Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True}),
141
+ "DPM++ 2M Ef": (DPMSolverMultistepScheduler, {"euler_at_final": True}),
142
+ "DPM++ 2M SDE Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}),
143
+ "DPM++ 2M SDE Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}),
144
+
145
+ "LCM": (LCMScheduler, {}),
146
+ "TCD": (TCDScheduler, {}),
147
+ "LCM trailing": (LCMScheduler, {"timestep_spacing": "trailing"}),
148
+ "TCD trailing": (TCDScheduler, {"timestep_spacing": "trailing"}),
149
+ "LCM Auto-Loader": (LCMScheduler, {}),
150
+ "TCD Auto-Loader": (TCDScheduler, {}),
151
+ }
152
+
153
+
154
+ def get_scheduler_config(name):
155
+ if not name in SCHEDULER_CONFIG_MAP.keys(): return SCHEDULER_CONFIG_MAP["Euler a"]
156
+ return SCHEDULER_CONFIG_MAP[name]
157
+
158
+
159
+ def save_readme_md(dir, url):
160
+ orig_url = ""
161
+ orig_name = ""
162
+ if is_repo_name(url):
163
+ orig_name = url
164
+ orig_url = f"https://huggingface.co/{url}/"
165
+ elif "http" in url:
166
+ orig_name = url
167
+ orig_url = url
168
+ if orig_name and orig_url:
169
+ md = f"""---
170
+ license: other
171
+ tags:
172
+ - text-to-image
173
+ ---
174
+ Converted from [{orig_name}]({orig_url}).
175
+ """
176
+ else:
177
+ md = f"""---
178
+ license: other
179
+ tags:
180
+ - text-to-image
181
+ ---
182
+ """
183
+ path = str(Path(dir, "README.md"))
184
+ with open(path, mode='w', encoding="utf-8") as f:
185
+ f.write(md)
186
+
187
+
188
+ def fuse_loras(pipe, civitai_key="", lora_dict={}, temp_dir="."):
189
+ if not lora_dict or not isinstance(lora_dict, dict): return
190
+ a_list = []
191
+ w_list = []
192
+ for k, v in lora_dict.items():
193
+ new_lora_file = get_download_file(temp_dir, k, civitai_key)
194
+ if not new_lora_file or not Path(new_lora_file).exists():
195
+ print(f"LoRA not found: {k}")
196
+ continue
197
+ w_name = Path(new_lora_file).name
198
+ a_name = Path(new_lora_file).stem
199
+ pipe.load_lora_weights(new_lora_file, weight_name = w_name, adapter_name = a_name)
200
+ a_list.append(a_name)
201
+ w_list.append(v)
202
+ pipe.set_adapters(a_list, adapter_weights=w_list)
203
+ pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
204
+ pipe.unload_lora_weights()
205
+
206
+
207
+ def convert_url_to_diffusers_sd(url, civitai_key="", half=True, vae=None, scheduler="Euler", lora_dict={},
208
+ model_type="v1", sample_size=512, ema="ema"):
209
+ temp_dir = "."
210
+ new_file = get_download_file(temp_dir, url, civitai_key)
211
+ if not new_file:
212
+ print(f"Not found: {url}")
213
+ return ""
214
+ new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
215
+
216
+ extract_ema = True if ema == "ema" else False
217
+
218
+ if model_type == "v1": #
219
+ config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
220
+ elif model_type == "v2":
221
+ if sample_size == 512:
222
+ config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference.yaml"
223
+ else:
224
+ config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
225
+
226
+ pipe = None
227
+ if is_repo_name(new_file):
228
+ if half:
229
+ pipe = StableDiffusionPipeline.from_pretrained(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True, torch_dtype=torch.float16)
230
+ else:
231
+ pipe = StableDiffusionPipeline.from_pretrained(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True)
232
+ else:
233
+ if half:
234
+ pipe = StableDiffusionPipeline.from_single_file(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True, torch_dtype=torch.float16)
235
+ else:
236
+ pipe = StableDiffusionPipeline.from_single_file(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True)
237
+
238
+ new_vae_file = ""
239
+ if vae:
240
+ if is_repo_name(vae):
241
+ if half:
242
+ pipe.vae = AutoencoderKL.from_pretrained(vae, torch_dtype=torch.float16)
243
+ else:
244
+ pipe.vae = AutoencoderKL.from_pretrained(vae)
245
+ else:
246
+ new_vae_file = get_download_file(temp_dir, vae, civitai_key)
247
+ if new_vae_file and half:
248
+ pipe.vae = AutoencoderKL.from_single_file(new_vae_file, torch_dtype=torch.float16)
249
+ elif new_vae_file:
250
+ pipe.vae = AutoencoderKL.from_single_file(new_vae_file)
251
+
252
+ fuse_loras(pipe, lora_dict, temp_dir, civitai_key)
253
+
254
+ sconf = get_scheduler_config(scheduler)
255
+ pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
256
+
257
+ if half:
258
+ pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
259
+ else:
260
+ pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
261
+
262
+ if Path(new_repo_name).exists():
263
+ save_readme_md(new_repo_name, url)
264
+
265
+ return new_repo_name
266
+
267
+
268
+ if __name__ == "__main__":
269
+ parser = argparse.ArgumentParser()
270
+
271
+ parser.add_argument("--url", default=None, type=str, required=True, help="URL of the model to convert.")
272
+ parser.add_argument("--half", default=True, help="Save weights in half precision.")
273
+ parser.add_argument("--model_type", default="v1", type=str, choices=["v1", "v2"], required=False, help="Extract EMA or non-EMA?")
274
+ parser.add_argument("--sample_size", default=512, type=int, choices=[512, 768], required=False, help="Sample size (px)")
275
+ parser.add_argument("--ema", default="ema", type=str, choices=["ema", "non-ema"], required=False, help="Extract EMA or non-EMA?")
276
+ parser.add_argument("--scheduler", default="Euler", type=str, choices=list(SCHEDULER_CONFIG_MAP.keys()), required=False, help="Scheduler name to use.")
277
+ parser.add_argument("--vae", default=None, type=str, required=False, help="URL of the VAE to use.")
278
+ parser.add_argument("--civitai_key", default=None, type=str, required=False, help="Civitai API Key (If you want to download file from Civitai).")
279
+ parser.add_argument("--lora1", default=None, type=str, required=False, help="URL of the LoRA to use.")
280
+ parser.add_argument("--lora1s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora1.")
281
+ parser.add_argument("--lora2", default=None, type=str, required=False, help="URL of the LoRA to use.")
282
+ parser.add_argument("--lora2s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora2.")
283
+ parser.add_argument("--lora3", default=None, type=str, required=False, help="URL of the LoRA to use.")
284
+ parser.add_argument("--lora3s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora3.")
285
+ parser.add_argument("--lora4", default=None, type=str, required=False, help="URL of the LoRA to use.")
286
+ parser.add_argument("--lora4s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora4.")
287
+ parser.add_argument("--lora5", default=None, type=str, required=False, help="URL of the LoRA to use.")
288
+ parser.add_argument("--lora5s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora5.")
289
+ parser.add_argument("--loras", default=None, type=str, required=False, help="Folder of the LoRA to use.")
290
+
291
+ args = parser.parse_args()
292
+ assert args.url is not None, "Must provide a URL!"
293
+
294
+ lora_dict = {args.lora1: args.lora1s, args.lora2: args.lora2s, args.lora3: args.lora3s, args.lora4: args.lora4s, args.lora5: args.lora5s}
295
+ if None in lora_dict.keys(): del lora_dict[None]
296
+
297
+ if args.loras and Path(args.loras).exists():
298
+ for p in Path(args.loras).glob('**/*.safetensors'):
299
+ lora_dict[str(p)] = 1.0
300
+
301
+ convert_url_to_diffusers_sd(args.url, args.civitai_key, args.half, args.vae, args.scheduler, lora_dict,
302
+ args.model_type, args.sample_size, args.ema)
303
+
304
+
305
+ # Usage: python convert_url_to_diffusers_sd.py --url https://huggingface.co/Yntec/DreamPhotoGASM/blob/main/DreamPhotoGASM.safetensors
306
+ # python convert_url_to_diffusers_sd.py --url https://huggingface.co/Yntec/DreamPhotoGASM/blob/main/DreamPhotoGASM.safetensors --scheduler "Euler a"
307
+ # python convert_url_to_diffusers_sd.py --url https://huggingface.co/Yntec/DreamPhotoGASM/blob/main/DreamPhotoGASM.safetensors --loras ./loras
convert_url_to_diffusers_sd_gr.py ADDED
@@ -0,0 +1,366 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from pathlib import Path
3
+ import os
4
+ import torch
5
+ from diffusers import StableDiffusionPipeline, AutoencoderKL
6
+ import gradio as gr
7
+ # also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
8
+
9
+
10
+ def list_sub(a, b):
11
+ return [e for e in a if e not in b]
12
+
13
+
14
+ def is_repo_name(s):
15
+ import re
16
+ return re.fullmatch(r'^[^/\.,\s]+?/[^/\.,\s]+?$', s)
17
+
18
+
19
+ def download_thing(directory, url, civitai_api_key="", progress=gr.Progress(track_tqdm=True)):
20
+ url = url.strip()
21
+ if "drive.google.com" in url:
22
+ original_dir = os.getcwd()
23
+ os.chdir(directory)
24
+ os.system(f"gdown --fuzzy {url}")
25
+ os.chdir(original_dir)
26
+ elif "huggingface.co" in url:
27
+ url = url.replace("?download=true", "")
28
+ if "/blob/" in url:
29
+ url = url.replace("/blob/", "/resolve/")
30
+ os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
31
+ else:
32
+ os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
33
+ elif "civitai.com" in url:
34
+ if "?" in url:
35
+ url = url.split("?")[0]
36
+ if civitai_api_key:
37
+ url = url + f"?token={civitai_api_key}"
38
+ os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
39
+ else:
40
+ print("You need an API key to download Civitai models.")
41
+ else:
42
+ os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
43
+
44
+
45
+ def get_local_model_list(dir_path):
46
+ model_list = []
47
+ valid_extensions = ('.safetensors', '.ckpt', '.bin', '.pt', '.pth')
48
+ for file in Path(dir_path).glob("*"):
49
+ if file.suffix in valid_extensions:
50
+ file_path = str(Path(f"{dir_path}/{file.name}"))
51
+ model_list.append(file_path)
52
+ return model_list
53
+
54
+
55
+ def get_download_file(temp_dir, url, civitai_key, progress=gr.Progress(track_tqdm=True)):
56
+ if not "http" in url and is_repo_name(url) and not Path(url).exists():
57
+ print(f"Use HF Repo: {url}")
58
+ new_file = url
59
+ elif not "http" in url and Path(url).exists():
60
+ print(f"Use local file: {url}")
61
+ new_file = url
62
+ elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
63
+ print(f"File to download alreday exists: {url}")
64
+ new_file = f"{temp_dir}/{url.split('/')[-1]}"
65
+ else:
66
+ print(f"Start downloading: {url}")
67
+ before = get_local_model_list(temp_dir)
68
+ try:
69
+ download_thing(temp_dir, url.strip(), civitai_key)
70
+ except Exception:
71
+ print(f"Download failed: {url}")
72
+ return ""
73
+ after = get_local_model_list(temp_dir)
74
+ new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
75
+ if not new_file:
76
+ print(f"Download failed: {url}")
77
+ return ""
78
+ print(f"Download completed: {url}")
79
+ return new_file
80
+
81
+
82
+ from diffusers import (
83
+ DPMSolverMultistepScheduler,
84
+ DPMSolverSinglestepScheduler,
85
+ KDPM2DiscreteScheduler,
86
+ EulerDiscreteScheduler,
87
+ EulerAncestralDiscreteScheduler,
88
+ HeunDiscreteScheduler,
89
+ LMSDiscreteScheduler,
90
+ DDIMScheduler,
91
+ DEISMultistepScheduler,
92
+ UniPCMultistepScheduler,
93
+ LCMScheduler,
94
+ PNDMScheduler,
95
+ KDPM2AncestralDiscreteScheduler,
96
+ DPMSolverSDEScheduler,
97
+ EDMDPMSolverMultistepScheduler,
98
+ DDPMScheduler,
99
+ EDMEulerScheduler,
100
+ TCDScheduler,
101
+ )
102
+
103
+
104
+ SCHEDULER_CONFIG_MAP = {
105
+ "DPM++ 2M": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False}),
106
+ "DPM++ 2M Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
107
+ "DPM++ 2M SDE": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
108
+ "DPM++ 2M SDE Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}),
109
+ "DPM++ 2S": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False}),
110
+ "DPM++ 2S Karras": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
111
+ "DPM++ 1S": (DPMSolverMultistepScheduler, {"solver_order": 1}),
112
+ "DPM++ 1S Karras": (DPMSolverMultistepScheduler, {"solver_order": 1, "use_karras_sigmas": True}),
113
+ "DPM++ 3M": (DPMSolverMultistepScheduler, {"solver_order": 3}),
114
+ "DPM++ 3M Karras": (DPMSolverMultistepScheduler, {"solver_order": 3, "use_karras_sigmas": True}),
115
+ "DPM++ SDE": (DPMSolverSDEScheduler, {"use_karras_sigmas": False}),
116
+ "DPM++ SDE Karras": (DPMSolverSDEScheduler, {"use_karras_sigmas": True}),
117
+ "DPM2": (KDPM2DiscreteScheduler, {}),
118
+ "DPM2 Karras": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
119
+ "DPM2 a": (KDPM2AncestralDiscreteScheduler, {}),
120
+ "DPM2 a Karras": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
121
+ "Euler": (EulerDiscreteScheduler, {}),
122
+ "Euler a": (EulerAncestralDiscreteScheduler, {}),
123
+ "Euler trailing": (EulerDiscreteScheduler, {"timestep_spacing": "trailing", "prediction_type": "sample"}),
124
+ "Euler a trailing": (EulerAncestralDiscreteScheduler, {"timestep_spacing": "trailing"}),
125
+ "Heun": (HeunDiscreteScheduler, {}),
126
+ "Heun Karras": (HeunDiscreteScheduler, {"use_karras_sigmas": True}),
127
+ "LMS": (LMSDiscreteScheduler, {}),
128
+ "LMS Karras": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
129
+ "DDIM": (DDIMScheduler, {}),
130
+ "DDIM trailing": (DDIMScheduler, {"timestep_spacing": "trailing"}),
131
+ "DEIS": (DEISMultistepScheduler, {}),
132
+ "UniPC": (UniPCMultistepScheduler, {}),
133
+ "UniPC Karras": (UniPCMultistepScheduler, {"use_karras_sigmas": True}),
134
+ "PNDM": (PNDMScheduler, {}),
135
+ "Euler EDM": (EDMEulerScheduler, {}),
136
+ "Euler EDM Karras": (EDMEulerScheduler, {"use_karras_sigmas": True}),
137
+ "DPM++ 2M EDM": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
138
+ "DPM++ 2M EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
139
+ "DDPM": (DDPMScheduler, {}),
140
+
141
+ "DPM++ 2M Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True}),
142
+ "DPM++ 2M Ef": (DPMSolverMultistepScheduler, {"euler_at_final": True}),
143
+ "DPM++ 2M SDE Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}),
144
+ "DPM++ 2M SDE Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}),
145
+
146
+ "LCM": (LCMScheduler, {}),
147
+ "TCD": (TCDScheduler, {}),
148
+ "LCM trailing": (LCMScheduler, {"timestep_spacing": "trailing"}),
149
+ "TCD trailing": (TCDScheduler, {"timestep_spacing": "trailing"}),
150
+ "LCM Auto-Loader": (LCMScheduler, {}),
151
+ "TCD Auto-Loader": (TCDScheduler, {}),
152
+ }
153
+
154
+
155
+ def get_scheduler_config(name):
156
+ if not name in SCHEDULER_CONFIG_MAP.keys(): return SCHEDULER_CONFIG_MAP["Euler"]
157
+ return SCHEDULER_CONFIG_MAP[name]
158
+
159
+
160
+ def save_readme_md(dir, url):
161
+ orig_url = ""
162
+ orig_name = ""
163
+ if is_repo_name(url):
164
+ orig_name = url
165
+ orig_url = f"https://huggingface.co/{url}/"
166
+ elif "http" in url:
167
+ orig_name = url
168
+ orig_url = url
169
+ if orig_name and orig_url:
170
+ md = f"""---
171
+ license: other
172
+ tags:
173
+ - text-to-image
174
+ ---
175
+ Converted from [{orig_name}]({orig_url}).
176
+ """
177
+ else:
178
+ md = f"""---
179
+ license: other
180
+ tags:
181
+ - text-to-image
182
+ ---
183
+ """
184
+ path = str(Path(dir, "README.md"))
185
+ with open(path, mode='w', encoding="utf-8") as f:
186
+ f.write(md)
187
+
188
+
189
+ def fuse_loras(pipe, lora_dict={}, temp_dir=".", civitai_key=""):
190
+ if not lora_dict or not isinstance(lora_dict, dict): return
191
+ a_list = []
192
+ w_list = []
193
+ for k, v in lora_dict.items():
194
+ new_lora_file = get_download_file(temp_dir, k, civitai_key)
195
+ if not new_lora_file or not Path(new_lora_file).exists():
196
+ print(f"LoRA not found: {k}")
197
+ continue
198
+ w_name = Path(new_lora_file).name
199
+ a_name = Path(new_lora_file).stem
200
+ pipe.load_lora_weights(new_lora_file, weight_name = w_name, adapter_name = a_name)
201
+ a_list.append(a_name)
202
+ w_list.append(v)
203
+ pipe.set_adapters(a_list, adapter_weights=w_list)
204
+ pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
205
+ pipe.unload_lora_weights()
206
+
207
+
208
+ def convert_url_to_diffusers_sd(url, civitai_key="", half=True, vae=None, scheduler="Euler", lora_dict={},
209
+ model_type="v1", sample_size=512, ema="ema", progress=gr.Progress(track_tqdm=True)):
210
+ progress(0, desc="Start converting...")
211
+ temp_dir = "."
212
+ new_file = get_download_file(temp_dir, url, civitai_key)
213
+ if not new_file:
214
+ print(f"Not found: {url}")
215
+ return ""
216
+ new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
217
+ if not is_repo_name(new_file): return ""
218
+
219
+ extract_ema = True if ema == "ema" else False
220
+
221
+ if model_type == "v1": #
222
+ config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
223
+ elif model_type == "v2":
224
+ if sample_size == 512:
225
+ config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference.yaml"
226
+ else:
227
+ config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
228
+
229
+ pipe = None
230
+ if is_repo_name(new_file):
231
+ if half:
232
+ pipe = StableDiffusionPipeline.from_pretrained(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True, torch_dtype=torch.float16)
233
+ else:
234
+ pipe = StableDiffusionPipeline.from_pretrained(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True)
235
+ else:
236
+ if half:
237
+ pipe = StableDiffusionPipeline.from_single_file(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True, torch_dtype=torch.float16)
238
+ else:
239
+ pipe = StableDiffusionPipeline.from_single_file(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True)
240
+
241
+ new_vae_file = ""
242
+ if vae:
243
+ if is_repo_name(vae):
244
+ if half:
245
+ pipe.vae = AutoencoderKL.from_pretrained(vae, torch_dtype=torch.float16)
246
+ else:
247
+ pipe.vae = AutoencoderKL.from_pretrained(vae)
248
+ else:
249
+ new_vae_file = get_download_file(temp_dir, vae, civitai_key)
250
+ if new_vae_file and half:
251
+ pipe.vae = AutoencoderKL.from_single_file(new_vae_file, torch_dtype=torch.float16)
252
+ elif new_vae_file:
253
+ pipe.vae = AutoencoderKL.from_single_file(new_vae_file)
254
+
255
+ fuse_loras(pipe, lora_dict, temp_dir, civitai_key)
256
+
257
+ sconf = get_scheduler_config(scheduler)
258
+ pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
259
+
260
+ if half:
261
+ pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
262
+ else:
263
+ pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
264
+
265
+ if Path(new_repo_name).exists():
266
+ save_readme_md(new_repo_name, url)
267
+
268
+ progress(1, desc="Converted.")
269
+ return new_repo_name
270
+
271
+
272
+ def is_repo_exists(repo_id):
273
+ from huggingface_hub import HfApi
274
+ api = HfApi()
275
+ try:
276
+ if api.repo_exists(repo_id=repo_id): return True
277
+ else: return False
278
+ except Exception as e:
279
+ print(f"Error: Failed to connect {repo_id}. ")
280
+ return True # for safe
281
+
282
+
283
+ def create_diffusers_repo(new_repo_id, diffusers_folder, progress=gr.Progress(track_tqdm=True)):
284
+ from huggingface_hub import HfApi
285
+ import os
286
+ hf_token = os.environ.get("HF_TOKEN")
287
+ api = HfApi()
288
+ try:
289
+ progress(0, desc="Start uploading...")
290
+ api.create_repo(repo_id=new_repo_id, token=hf_token)
291
+ for path in Path(diffusers_folder).glob("*"):
292
+ if path.is_dir():
293
+ api.upload_folder(repo_id=new_repo_id, folder_path=str(path), path_in_repo=path.name, token=hf_token)
294
+ elif path.is_file():
295
+ api.upload_file(repo_id=new_repo_id, path_or_fileobj=str(path), path_in_repo=path.name, token=hf_token)
296
+ progress(1, desc="Uploaded.")
297
+ url = f"https://huggingface.co/{new_repo_id}"
298
+ except Exception as e:
299
+ print(f"Error: Failed to upload to {new_repo_id}. ")
300
+ return ""
301
+ return url
302
+
303
+
304
+ def convert_url_to_diffusers_repo(dl_url, new_repo_id, hf_token, civitai_key="", repo_urls=[], half=True, vae=None,
305
+ scheduler="Euler a", lora1=None, lora1s=1.0, lora2=None, lora2s=1.0, lora3=None, lora3s=1.0,
306
+ lora4=None, lora4s=1.0, lora5=None, lora5s=1.0,
307
+ model_type="v1", sample_size=512, ema="ema", progress=gr.Progress(track_tqdm=True)):
308
+ if hf_token and not os.environ.get("HF_TOKEN"): os.environ['HF_TOKEN'] = hf_token
309
+ if not civitai_key and os.environ.get("CIVITAI_API_KEY"): civitai_key = os.environ.get("CIVITAI_API_KEY")
310
+ if not is_repo_name(new_repo_id):
311
+ print(f"Invalid repo name: {new_repo_id}")
312
+ progress(1, desc=f"Invalid repo name: {new_repo_id}")
313
+ return ""
314
+ if is_repo_exists(new_repo_id):
315
+ print(f"Repo already exists: {new_repo_id}")
316
+ progress(1, desc=f"Repo already exists: {new_repo_id}")
317
+ return ""
318
+ lora_dict = {lora1: lora1s, lora2: lora2s, lora3: lora3s, lora4: lora4s, lora5: lora5s}
319
+ if None in lora_dict.keys(): del lora_dict[None]
320
+ new_path = convert_url_to_diffusers_sd(dl_url, civitai_key, half, vae, scheduler, lora_dict,
321
+ model_type, sample_size, ema)
322
+ if not new_path: return ""
323
+ repo_url = create_diffusers_repo(new_repo_id, new_path)
324
+ if not repo_urls: repo_urls = []
325
+ repo_urls.append(repo_url)
326
+ md = "Your new repo:<br>"
327
+ for u in repo_urls:
328
+ md += f"[{str(u).split('/')[-2]}/{str(u).split('/')[-1]}]({str(u)})<br>"
329
+ return gr.update(value=repo_urls, choices=repo_urls), gr.update(value=md)
330
+
331
+
332
+ if __name__ == "__main__":
333
+ parser = argparse.ArgumentParser()
334
+
335
+ parser.add_argument("--url", default=None, type=str, required=True, help="URL of the model to convert.")
336
+ parser.add_argument("--half", default=True, help="Save weights in half precision.")
337
+ parser.add_argument("--model_type", default="v1", type=str, choices=["v1", "v2"], required=False, help="Extract EMA or non-EMA?")
338
+ parser.add_argument("--sample_size", default=512, type=int, choices=[512, 768], required=False, help="Sample size (px)")
339
+ parser.add_argument("--ema", default="ema", type=str, choices=["ema", "non-ema"], required=False, help="Extract EMA or non-EMA?")
340
+ parser.add_argument("--scheduler", default="Euler", type=str, choices=list(SCHEDULER_CONFIG_MAP.keys()), required=False, help="Scheduler name to use.")
341
+ parser.add_argument("--vae", default=None, type=str, required=False, help="URL of the VAE to use.")
342
+ parser.add_argument("--civitai_key", default=None, type=str, required=False, help="Civitai API Key (If you want to download file from Civitai).")
343
+ parser.add_argument("--lora1", default=None, type=str, required=False, help="URL of the LoRA to use.")
344
+ parser.add_argument("--lora1s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora1.")
345
+ parser.add_argument("--lora2", default=None, type=str, required=False, help="URL of the LoRA to use.")
346
+ parser.add_argument("--lora2s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora2.")
347
+ parser.add_argument("--lora3", default=None, type=str, required=False, help="URL of the LoRA to use.")
348
+ parser.add_argument("--lora3s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora3.")
349
+ parser.add_argument("--lora4", default=None, type=str, required=False, help="URL of the LoRA to use.")
350
+ parser.add_argument("--lora4s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora4.")
351
+ parser.add_argument("--lora5", default=None, type=str, required=False, help="URL of the LoRA to use.")
352
+ parser.add_argument("--lora5s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora5.")
353
+ parser.add_argument("--loras", default=None, type=str, required=False, help="Folder of the LoRA to use.")
354
+
355
+ args = parser.parse_args()
356
+ assert args.url is not None, "Must provide a URL!"
357
+
358
+ lora_dict = {args.lora1: args.lora1s, args.lora2: args.lora2s, args.lora3: args.lora3s, args.lora4: args.lora4s, args.lora5: args.lora5s}
359
+ if None in lora_dict.keys(): del lora_dict[None]
360
+
361
+ if args.loras and Path(args.loras).exists():
362
+ for p in Path(args.loras).glob('**/*.safetensors'):
363
+ lora_dict[str(p)] = 1.0
364
+
365
+ convert_url_to_diffusers_sd(args.url, args.civitai_key, args.half, args.vae, args.scheduler, lora_dict,
366
+ args.model_type, args.sample_size, args.ema)
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ huggingface_hub
2
+ safetensors
3
+ transformers
4
+ accelerate
5
+ git+https://github.com/huggingface/diffusers
6
+ pytorch_lightning
7
+ peft
8
+ aria2
9
+ gdown