Spaces:
Running
Running
File size: 10,882 Bytes
a6a09d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import gradio as gr
from huggingface_hub import HfApi, HfFolder, hf_hub_download, snapshot_download
import os
from pathlib import Path
import shutil
import gc
import re
import urllib.parse
import subprocess
import time
def get_token():
try:
token = HfFolder.get_token()
except Exception:
token = ""
return token
def set_token(token):
try:
HfFolder.save_token(token)
except Exception:
print(f"Error: Failed to save token.")
def get_user_agent():
return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'
def is_repo_exists(repo_id: str, repo_type: str="model"):
hf_token = get_token()
api = HfApi(token=hf_token)
try:
if api.repo_exists(repo_id=repo_id, repo_type=repo_type, token=hf_token): return True
else: return False
except Exception as e:
print(f"Error: Failed to connect {repo_id} ({repo_type}). {e}")
return True # for safe
MODEL_TYPE_CLASS = {
"diffusers:StableDiffusionPipeline": "SD 1.5",
"diffusers:StableDiffusionXLPipeline": "SDXL",
"diffusers:FluxPipeline": "FLUX",
}
def get_model_type(repo_id: str):
hf_token = get_token()
api = HfApi(token=hf_token)
lora_filename = "pytorch_lora_weights.safetensors"
diffusers_filename = "model_index.json"
default = "SDXL"
try:
if api.file_exists(repo_id=repo_id, filename=lora_filename, token=hf_token): return "LoRA"
if not api.file_exists(repo_id=repo_id, filename=diffusers_filename, token=hf_token): return "None"
model = api.model_info(repo_id=repo_id, token=hf_token)
tags = model.tags
for tag in tags:
if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
except Exception:
return default
return default
def list_uniq(l):
return sorted(set(l), key=l.index)
def list_sub(a, b):
return [e for e in a if e not in b]
def is_repo_name(s):
return re.fullmatch(r'^[\w_\-\.]+/[\w_\-\.]+$', s)
def get_hf_url(repo_id: str, repo_type: str="model"):
if repo_type == "dataset": url = f"https://huggingface.co/datasets/{repo_id}"
elif repo_type == "space": url = f"https://huggingface.co/spaces/{repo_id}"
else: url = f"https://huggingface.co/{repo_id}"
return url
def split_hf_url(url: str):
try:
s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets|spaces)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.\w+)(?:\?download=true)?$', url)[0])
if len(s) < 4: return "", "", "", ""
repo_id = s[1]
if s[0] == "datasets": repo_type = "dataset"
elif s[0] == "spaces": repo_type = "space"
else: repo_type = "model"
subfolder = urllib.parse.unquote(s[2]) if s[2] else None
filename = urllib.parse.unquote(s[3])
return repo_id, filename, subfolder, repo_type
except Exception as e:
print(e)
def download_hf_file(directory, url, progress=gr.Progress(track_tqdm=True)):
hf_token = get_token()
repo_id, filename, subfolder, repo_type = split_hf_url(url)
try:
print(f"Downloading {url} to {directory}")
if subfolder is not None: path = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
else: path = hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token)
return path
except Exception as e:
print(f"Failed to download: {e}")
return None
def download_thing(directory, url, civitai_api_key="", progress=gr.Progress(track_tqdm=True)): # requires aria2, gdown
url = url.strip()
if "drive.google.com" in url:
original_dir = os.getcwd()
os.chdir(directory)
os.system(f"gdown --fuzzy {url}")
os.chdir(original_dir)
elif "huggingface.co" in url:
url = url.replace("?download=true", "")
if "/blob/" in url: url = url.replace("/blob/", "/resolve/")
download_hf_file(directory, url)
elif "civitai.com" in url:
if "?" in url:
url = url.split("?")[0]
if civitai_api_key:
url = url + f"?token={civitai_api_key}"
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
else:
print("You need an API key to download Civitai models.")
else:
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
def get_local_file_list(dir_path):
file_list = []
for file in Path(dir_path).glob("**/*.*"):
if file.is_file():
file_path = str(file)
file_list.append(file_path)
return file_list
def get_download_file(temp_dir, url, civitai_key, progress=gr.Progress(track_tqdm=True)):
if not "http" in url and is_repo_name(url) and not Path(url).exists():
print(f"Use HF Repo: {url}")
new_file = url
elif not "http" in url and Path(url).exists():
print(f"Use local file: {url}")
new_file = url
elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
print(f"File to download alreday exists: {url}")
new_file = f"{temp_dir}/{url.split('/')[-1]}"
else:
print(f"Start downloading: {url}")
before = get_local_file_list(temp_dir)
try:
download_thing(temp_dir, url.strip(), civitai_key)
except Exception:
print(f"Download failed: {url}")
return ""
after = get_local_file_list(temp_dir)
new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
if not new_file:
print(f"Download failed: {url}")
return ""
print(f"Download completed: {url}")
return new_file
def download_repo(repo_id: str, dir_path: str, progress=gr.Progress(track_tqdm=True)): # for diffusers repo
hf_token = get_token()
try:
snapshot_download(repo_id=repo_id, local_dir=dir_path, token=hf_token, allow_patterns=["*.safetensors", "*.bin"],
ignore_patterns=["*.fp16.*", "/*.safetensors", "/*.bin"], force_download=True)
return True
except Exception as e:
print(f"Error: Failed to download {repo_id}. {e}")
gr.Warning(f"Error: Failed to download {repo_id}. {e}")
return False
def upload_repo(repo_id: str, dir_path: str, is_private: bool, progress=gr.Progress(track_tqdm=True)): # for diffusers repo
hf_token = get_token()
api = HfApi(token=hf_token)
try:
progress(0, desc="Start uploading...")
api.create_repo(repo_id=repo_id, token=hf_token, private=is_private, exist_ok=True)
for path in Path(dir_path).glob("*"):
if path.is_dir():
api.upload_folder(repo_id=repo_id, folder_path=str(path), path_in_repo=path.name, token=hf_token)
elif path.is_file():
api.upload_file(repo_id=repo_id, path_or_fileobj=str(path), path_in_repo=path.name, token=hf_token)
progress(1, desc="Uploaded.")
return get_hf_url(repo_id, "model")
except Exception as e:
print(f"Error: Failed to upload to {repo_id}. {e}")
return ""
HF_SUBFOLDER_NAME = ["None", "user_repo"]
def duplicate_hf_repo(src_repo: str, dst_repo: str, src_repo_type: str, dst_repo_type: str,
is_private: bool, subfolder_type: str=HF_SUBFOLDER_NAME[1], progress=gr.Progress(track_tqdm=True)):
hf_token = get_token()
api = HfApi(token=hf_token)
try:
if subfolder_type == "user_repo": subfolder = src_repo.replace("/", "_")
else: subfolder = ""
progress(0, desc="Start duplicating...")
api.create_repo(repo_id=dst_repo, repo_type=dst_repo_type, private=is_private, exist_ok=True, token=hf_token)
for path in api.list_repo_files(repo_id=src_repo, repo_type=src_repo_type, token=hf_token):
file = hf_hub_download(repo_id=src_repo, filename=path, repo_type=src_repo_type, token=hf_token)
if not Path(file).exists(): continue
if Path(file).is_dir(): # unused for now
api.upload_folder(repo_id=dst_repo, folder_path=file, path_in_repo=f"{subfolder}/{path}" if subfolder else path,
repo_type=dst_repo_type, token=hf_token)
elif Path(file).is_file():
api.upload_file(repo_id=dst_repo, path_or_fileobj=file, path_in_repo=f"{subfolder}/{path}" if subfolder else path,
repo_type=dst_repo_type, token=hf_token)
if Path(file).exists(): Path(file).unlink()
progress(1, desc="Duplicated.")
return f"{get_hf_url(dst_repo, dst_repo_type)}/tree/main/{subfolder}" if subfolder else get_hf_url(dst_repo, dst_repo_type)
except Exception as e:
print(f"Error: Failed to duplicate repo {src_repo} to {dst_repo}. {e}")
return ""
BASE_DIR = str(Path(__file__).resolve().parent.resolve())
CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
def get_file(url: str, path: str): # requires aria2, gdown
print(f"Downloading {url} to {path}...")
get_download_file(path, url, CIVITAI_API_KEY)
def git_clone(url: str, path: str, pip: bool=False, addcmd: str=""): # requires git
os.makedirs(str(Path(BASE_DIR, path)), exist_ok=True)
os.chdir(Path(BASE_DIR, path))
print(f"Cloning {url} to {path}...")
cmd = f'git clone {url}'
print(f'Running {cmd} at {Path.cwd()}')
i = subprocess.run(cmd, shell=True).returncode
if i != 0: print(f'Error occured at running {cmd}')
p = url.split("/")[-1]
if not Path(p).exists: return
if pip:
os.chdir(Path(BASE_DIR, path, p))
cmd = f'pip install -r requirements.txt'
print(f'Running {cmd} at {Path.cwd()}')
i = subprocess.run(cmd, shell=True).returncode
if i != 0: print(f'Error occured at running {cmd}')
if addcmd:
os.chdir(Path(BASE_DIR, path, p))
cmd = addcmd
print(f'Running {cmd} at {Path.cwd()}')
i = subprocess.run(cmd, shell=True).returncode
if i != 0: print(f'Error occured at running {cmd}')
def run(cmd: str, timeout: float=0):
print(f'Running {cmd} at {Path.cwd()}')
if timeout == 0:
i = subprocess.run(cmd, shell=True).returncode
if i != 0: print(f'Error occured at running {cmd}')
else:
p = subprocess.Popen(cmd, shell=True)
time.sleep(timeout)
p.terminate()
print(f'Terminated in {timeout} seconds')
|