import os if os.environ.get("SPACES_ZERO_GPU") is not None: import spaces else: class spaces: @staticmethod def GPU(func): def wrapper(*args, **kwargs): return func(*args, **kwargs) return wrapper import gradio as gr import subprocess #subprocess.run("git clone https://github.com/AI4Bharat/NeMo.git && cd NeMo && git checkout nemo-v2 && bash reinstall.sh", shell=True) import torch import nemo.collections.asr as nemo_asr from pathlib import Path model = nemo_asr.models.ASRModel.from_pretrained("ai4bharat/indicconformer_stt_ml_hybrid_rnnt_large") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.freeze() # inference mode model = model.to(device) # transfer model to device @spaces.GPU def infer(srcfile: str): tmpfile = "sample_audio_infer_ready.wav" subprocess.run(f"ffmpeg -i {srcfile} -ac 1 -ar 16000 {tmpfile}", shell=True) model.cur_decoder = "ctc" ctc_text = model.transcribe([tmpfile], batch_size=1, logprobs=False, language_id='ml')[0] print(ctc_text) model.cur_decoder = "rnnt" rnnt_text = model.transcribe([tmpfile], batch_size=1, language_id='ml')[0] print(rnnt_text) if Path(tmpfile).exists(): Path(tmpfile).unlink() return ctc_text, rnnt_text with gr.Blocks() as demo: input_audio = gr.Audio(label="Input", type="filepath", sources=["upload", "microphone"], format="wav") run_button = gr.Button("Run", variant="primary") with gr.Row(): ctc_text = gr.Textbox(label="CTC", value="", show_copy_button=True) rnnt_text = gr.Textbox(label="RNNT", value="", show_copy_button=True) run_button.click(infer, [input_audio], [ctc_text, rnnt_text]) demo.launch()