File size: 99,534 Bytes
76dc483
5d7e253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76dc483
5d7e253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76dc483
 
5d7e253
 
76dc483
 
 
5d7e253
76dc483
 
5d7e253
76dc483
 
5d7e253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76dc483
5d7e253
76dc483
5d7e253
 
 
 
 
76dc483
5d7e253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4917b55
 
 
76dc483
 
5d7e253
 
 
 
 
76dc483
5d7e253
76dc483
5d7e253
 
 
 
 
 
 
dfc06f2
5d7e253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76dc483
5d7e253
 
 
76dc483
5d7e253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76dc483
5d7e253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76dc483
5d7e253
 
 
76dc483
5d7e253
 
 
 
 
 
 
 
76dc483
5d7e253
 
 
 
 
 
 
 
 
 
 
76dc483
5d7e253
 
 
76dc483
5d7e253
 
 
 
 
 
 
 
 
 
76dc483
5d7e253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eec4bb9
5d7e253
 
eec4bb9
5d7e253
 
 
 
 
 
 
 
eec4bb9
5d7e253
 
 
 
eec4bb9
5d7e253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900721f
5d7e253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900721f
5d7e253
 
 
 
 
 
 
900721f
eec4bb9
5d7e253
 
900721f
5d7e253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900721f
5d7e253
 
900721f
5d7e253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76dc483
5d7e253
 
 
76dc483
5d7e253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76dc483
5d7e253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76dc483
5d7e253
76dc483
5d7e253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76dc483
5d7e253
 
76dc483
 
 
 
 
 
 
5d7e253
76dc483
 
 
 
 
 
5d7e253
76dc483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7e253
76dc483
5d7e253
 
 
76dc483
 
5d7e253
76dc483
 
 
 
 
5d7e253
76dc483
5d7e253
76dc483
5d7e253
 
 
 
 
 
76dc483
5d7e253
 
76dc483
 
 
 
 
 
5d7e253
76dc483
5d7e253
76dc483
5d7e253
76dc483
5d7e253
 
 
 
 
eec4bb9
76dc483
 
 
5d7e253
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
import spaces
import os
from stablepy import (
    Model_Diffusers,
    SCHEDULE_TYPE_OPTIONS,
    SCHEDULE_PREDICTION_TYPE_OPTIONS,
    check_scheduler_compatibility,
    TASK_AND_PREPROCESSORS,
)
from constants import (
    TASK_STABLEPY,
    TASK_MODEL_LIST,
    UPSCALER_DICT_GUI,
    UPSCALER_KEYS,
    PROMPT_W_OPTIONS,
    WARNING_MSG_VAE,
    SDXL_TASK,
    MODEL_TYPE_TASK,
    POST_PROCESSING_SAMPLER,
    DIFFUSERS_CONTROLNET_MODEL,

)
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
import torch
import re
from stablepy import (
    scheduler_names,
    IP_ADAPTERS_SD,
    IP_ADAPTERS_SDXL,
)
import time
from PIL import ImageFile
from utils import (
    get_model_list,
    extract_parameters,
    get_model_type,
    extract_exif_data,
    create_mask_now,
    download_diffuser_repo,
    get_used_storage_gb,
    delete_model,
    progress_step_bar,
    html_template_message,
    escape_html,
)
from image_processor import preprocessor_tab
from datetime import datetime
import gradio as gr
import logging
import diffusers
import warnings
from stablepy import logger
from diffusers import FluxPipeline
# import urllib.parse

ImageFile.LOAD_TRUNCATED_IMAGES = True
torch.backends.cuda.matmul.allow_tf32 = True
# os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1"
print(os.getenv("SPACES_ZERO_GPU"))

## BEGIN MOD
from modutils import (list_uniq, download_private_repo, get_model_id_list, get_tupled_embed_list,
    get_lora_model_list, get_all_lora_tupled_list, update_loras, apply_lora_prompt, set_prompt_loras,
    get_my_lora, upload_file_lora, move_file_lora, search_civitai_lora, select_civitai_lora,
    update_civitai_selection, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL,
    set_textual_inversion_prompt, get_model_pipeline, change_interface_mode, get_t2i_model_info,
    get_tupled_model_list, save_gallery_images, save_gallery_history, set_optimization, set_sampler_settings,
    set_quick_presets, process_style_prompt, optimization_list, save_images, download_things, valid_model_name,
    preset_styles, preset_quality, preset_sampler_setting, translate_to_en, EXAMPLES_GUI, RESOURCES)
from env import (HF_TOKEN, CIVITAI_API_KEY, HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO,
    HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
    DIRECTORY_MODELS, DIRECTORY_LORAS, DIRECTORY_VAES, DIRECTORY_EMBEDS, DIRECTORY_EMBEDS_SDXL,
    DIRECTORY_EMBEDS_POSITIVE_SDXL, LOAD_DIFFUSERS_FORMAT_MODEL,
    DOWNLOAD_MODEL_LIST, DOWNLOAD_LORA_LIST, DOWNLOAD_VAE_LIST, DOWNLOAD_EMBEDS)

download_private_repo(HF_LORA_ESSENTIAL_PRIVATE_REPO, DIRECTORY_LORAS, True)
download_private_repo(HF_VAE_PRIVATE_REPO, DIRECTORY_VAES, False)
## END MOD

# - **Download Models**
DOWNLOAD_MODEL = ", ".join(DOWNLOAD_MODEL_LIST)
# - **Download VAEs**
DOWNLOAD_VAE = ", ".join(DOWNLOAD_VAE_LIST)
# - **Download LoRAs**
DOWNLOAD_LORA = ", ".join(DOWNLOAD_LORA_LIST)

# Download stuffs
for url in [url.strip() for url in DOWNLOAD_MODEL.split(',')]:
    if not os.path.exists(f"./models/{url.split('/')[-1]}"):
        download_things(DIRECTORY_MODELS, url, HF_TOKEN, CIVITAI_API_KEY)
for url in [url.strip() for url in DOWNLOAD_VAE.split(',')]:
    if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
        download_things(DIRECTORY_VAES, url, HF_TOKEN, CIVITAI_API_KEY)
for url in [url.strip() for url in DOWNLOAD_LORA.split(',')]:
    if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
        download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY)

# Download Embeddings
for url_embed in DOWNLOAD_EMBEDS:
    if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
        download_things(DIRECTORY_EMBEDS, url_embed, HF_TOKEN, CIVITAI_API_KEY)

# Build list models
embed_list = get_model_list(DIRECTORY_EMBEDS)
lora_model_list = get_lora_model_list()
vae_model_list = get_model_list(DIRECTORY_VAES)
vae_model_list.insert(0, "BakedVAE")
vae_model_list.insert(0, "None")

## BEGIN MOD
single_file_model_list = get_model_list(DIRECTORY_MODELS)
model_list = list_uniq(get_model_id_list() + LOAD_DIFFUSERS_FORMAT_MODEL + single_file_model_list)
download_private_repo(HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, DIRECTORY_EMBEDS_SDXL, False)
download_private_repo(HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO, DIRECTORY_EMBEDS_POSITIVE_SDXL, False)
embed_sdxl_list = get_model_list(DIRECTORY_EMBEDS_SDXL) + get_model_list(DIRECTORY_EMBEDS_POSITIVE_SDXL)

def get_embed_list(pipeline_name):
    return get_tupled_embed_list(embed_sdxl_list if pipeline_name == "StableDiffusionXLPipeline" else embed_list)
## END MOD

print('\033[33m🏁 Download and listing of valid models completed.\033[0m')

flux_repo = "camenduru/FLUX.1-dev-diffusers"
flux_pipe = FluxPipeline.from_pretrained(
    flux_repo,
    transformer=None,
    torch_dtype=torch.bfloat16,
).to("cuda")
components = flux_pipe.components
components.pop("transformer", None)
delete_model(flux_repo)

#######################
# GUI
#######################
logging.getLogger("diffusers").setLevel(logging.ERROR)
diffusers.utils.logging.set_verbosity(40)
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers")
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
## BEGIN MOD
#logger.setLevel(logging.CRITICAL)
logger.setLevel(logging.DEBUG)

from tagger.v2 import V2_ALL_MODELS, v2_random_prompt, v2_upsampling_prompt
from tagger.utils import (gradio_copy_text, COPY_ACTION_JS, gradio_copy_prompt,
    V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS, V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)
from tagger.tagger import (predict_tags_wd, convert_danbooru_to_e621_prompt,
    remove_specific_prompt, insert_recom_prompt, insert_model_recom_prompt,
    compose_prompt_to_copy, translate_prompt, select_random_character)
def description_ui():
    gr.Markdown(
        """

## Danbooru Tags Transformer V2 Demo with WD Tagger

(Image =>) Prompt => Upsampled longer prompt

- Mod of p1atdev's [Danbooru Tags Transformer V2 Demo](https://huggingface.co/spaces/p1atdev/danbooru-tags-transformer-v2) and [WD Tagger with 🤗 transformers](https://huggingface.co/spaces/p1atdev/wd-tagger-transformers).

- Models: p1atdev's [wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf), [dart-v2-moe-sft](https://huggingface.co/p1atdev/dart-v2-moe-sft)

"""
    )
## END MOD

class GuiSD:
    def __init__(self, stream=True):
        self.model = None
        self.status_loading = False
        self.sleep_loading = 4
        self.last_load = datetime.now()
        self.inventory = []

    def update_storage_models(self, storage_floor_gb=24, required_inventory_for_purge=3):
        while get_used_storage_gb() > storage_floor_gb:
            if len(self.inventory) < required_inventory_for_purge:
                break
            removal_candidate = self.inventory.pop(0)
            delete_model(removal_candidate)

    def update_inventory(self, model_name):
        if model_name not in single_file_model_list:
            self.inventory = [
                m for m in self.inventory if m != model_name
            ] + [model_name]
        print(self.inventory)

    def load_new_model(self, model_name, vae_model, task, controlnet_model, progress=gr.Progress(track_tqdm=True)):

        # download link model > model_name

        model_name = valid_model_name(model_name) # MOD

        self.update_storage_models()

        vae_model = vae_model if vae_model != "None" else None
        model_type = get_model_type(model_name)
        dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16

        if not os.path.exists(model_name):
            _ = download_diffuser_repo(
                repo_name=model_name,
                model_type=model_type,
                revision="main",
                token=True,
            )

        self.update_inventory(model_name)

        for i in range(68):
            if not self.status_loading:
                self.status_loading = True
                if i > 0:
                    time.sleep(self.sleep_loading)
                    print("Previous model ops...")
                break
            time.sleep(0.5)
            print(f"Waiting queue {i}")
            yield "Waiting queue"

        self.status_loading = True

        yield f"Loading model: {model_name}"

        if vae_model == "BakedVAE":
            if not os.path.exists(model_name):
                vae_model = model_name
            else:
                vae_model = None
        elif vae_model:
            vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5"
            if model_type != vae_type:
                gr.Warning(WARNING_MSG_VAE)

        print("Loading model...")

        try:
            start_time = time.time()

            if self.model is None:
                self.model = Model_Diffusers(
                    base_model_id=model_name,
                    task_name=TASK_STABLEPY[task],
                    vae_model=vae_model,
                    type_model_precision=dtype_model,
                    retain_task_model_in_cache=False,
                    controlnet_model=controlnet_model,
                    device="cpu",
                    env_components=components,
                )
                self.model.advanced_params(image_preprocessor_cuda_active=True)
            else:
                if self.model.base_model_id != model_name:
                    load_now_time = datetime.now()
                    elapsed_time = max((load_now_time - self.last_load).total_seconds(), 0)

                    if elapsed_time <= 9:
                        print("Waiting for the previous model's time ops...")
                        time.sleep(9 - elapsed_time)

                self.model.device = torch.device("cpu")
                self.model.load_pipe(
                    model_name,
                    task_name=TASK_STABLEPY[task],
                    vae_model=vae_model,
                    type_model_precision=dtype_model,
                    retain_task_model_in_cache=False,
                    controlnet_model=controlnet_model,
                )

            end_time = time.time()
            self.sleep_loading = max(min(int(end_time - start_time), 10), 4)
        except Exception as e:
            self.last_load = datetime.now()
            self.status_loading = False
            self.sleep_loading = 4
            raise e

        self.last_load = datetime.now()
        self.status_loading = False

        yield f"Model loaded: {model_name}"

    #@spaces.GPU
    @torch.inference_mode()
    def generate_pipeline(

        self,

        prompt,

        neg_prompt,

        num_images,

        steps,

        cfg,

        clip_skip,

        seed,

        lora1,

        lora_scale1,

        lora2,

        lora_scale2,

        lora3,

        lora_scale3,

        lora4,

        lora_scale4,

        lora5,

        lora_scale5,

        lora6,

        lora_scale6,

        lora7,

        lora_scale7,

        sampler,

        schedule_type,

        schedule_prediction_type,

        img_height,

        img_width,

        model_name,

        vae_model,

        task,

        image_control,

        preprocessor_name,

        preprocess_resolution,

        image_resolution,

        style_prompt,  # list []

        style_json_file,

        image_mask,

        strength,

        low_threshold,

        high_threshold,

        value_threshold,

        distance_threshold,

        recolor_gamma_correction,

        tile_blur_sigma,

        controlnet_output_scaling_in_unet,

        controlnet_start_threshold,

        controlnet_stop_threshold,

        textual_inversion,

        syntax_weights,

        upscaler_model_path,

        upscaler_increases_size,

        esrgan_tile,

        esrgan_tile_overlap,

        hires_steps,

        hires_denoising_strength,

        hires_sampler,

        hires_prompt,

        hires_negative_prompt,

        hires_before_adetailer,

        hires_after_adetailer,

        hires_schedule_type,

        hires_guidance_scale,

        controlnet_model,

        loop_generation,

        leave_progress_bar,

        disable_progress_bar,

        image_previews,

        display_images,

        save_generated_images,

        filename_pattern,

        image_storage_location,

        retain_compel_previous_load,

        retain_detailfix_model_previous_load,

        retain_hires_model_previous_load,

        t2i_adapter_preprocessor,

        t2i_adapter_conditioning_scale,

        t2i_adapter_conditioning_factor,

        xformers_memory_efficient_attention,

        freeu,

        generator_in_cpu,

        adetailer_inpaint_only,

        adetailer_verbose,

        adetailer_sampler,

        adetailer_active_a,

        prompt_ad_a,

        negative_prompt_ad_a,

        strength_ad_a,

        face_detector_ad_a,

        person_detector_ad_a,

        hand_detector_ad_a,

        mask_dilation_a,

        mask_blur_a,

        mask_padding_a,

        adetailer_active_b,

        prompt_ad_b,

        negative_prompt_ad_b,

        strength_ad_b,

        face_detector_ad_b,

        person_detector_ad_b,

        hand_detector_ad_b,

        mask_dilation_b,

        mask_blur_b,

        mask_padding_b,

        retain_task_cache_gui,

        guidance_rescale,

        image_ip1,

        mask_ip1,

        model_ip1,

        mode_ip1,

        scale_ip1,

        image_ip2,

        mask_ip2,

        model_ip2,

        mode_ip2,

        scale_ip2,

        pag_scale,

    ):
        info_state = html_template_message("Navigating latent space...")
        yield info_state, gr.update(), gr.update()

        vae_model = vae_model if vae_model != "None" else None
        loras_list = [lora1, lora2, lora3, lora4, lora5, lora6, lora7]
        vae_msg = f"VAE: {vae_model}" if vae_model else ""
        msg_lora = ""

## BEGIN MOD
        loras_list = [s if s else "None" for s in loras_list]
        global lora_model_list
        lora_model_list = get_lora_model_list()
        lora1, lora_scale1, lora2, lora_scale2, lora3, lora_scale3, lora4, lora_scale4, lora5, lora_scale5, lora6, lora_scale6, lora7, lora_scale7 = \
                set_prompt_loras(prompt, syntax_weights, model_name, lora1, lora_scale1, lora2, lora_scale2, lora3,
                                  lora_scale3, lora4, lora_scale4, lora5, lora_scale5, lora6, lora_scale6, lora7, lora_scale7)
## END MOD

        print("Config model:", model_name, vae_model, loras_list)

        task = TASK_STABLEPY[task]

        params_ip_img = []
        params_ip_msk = []
        params_ip_model = []
        params_ip_mode = []
        params_ip_scale = []

        all_adapters = [
            (image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1),
            (image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2),
        ]

        if not hasattr(self.model.pipe, "transformer"):
            for imgip, mskip, modelip, modeip, scaleip in all_adapters:
                if imgip:
                    params_ip_img.append(imgip)
                    if mskip:
                        params_ip_msk.append(mskip)
                    params_ip_model.append(modelip)
                    params_ip_mode.append(modeip)
                    params_ip_scale.append(scaleip)

        concurrency = 5
        self.model.stream_config(concurrency=concurrency, latent_resize_by=1, vae_decoding=False)

        if task != "txt2img" and not image_control:
            raise ValueError("No control image found: To use this function, you have to upload an image in 'Image ControlNet/Inpaint/Img2img'")

        if task == "inpaint" and not image_mask:
            raise ValueError("No mask image found: Specify one in 'Image Mask'")

        if upscaler_model_path in UPSCALER_KEYS[:9]:
            upscaler_model = upscaler_model_path
        else:
            directory_upscalers = 'upscalers'
            os.makedirs(directory_upscalers, exist_ok=True)

            url_upscaler = UPSCALER_DICT_GUI[upscaler_model_path]

            if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
                download_things(directory_upscalers, url_upscaler, HF_TOKEN)

            upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}"

        logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)

        adetailer_params_A = {
            "face_detector_ad": face_detector_ad_a,
            "person_detector_ad": person_detector_ad_a,
            "hand_detector_ad": hand_detector_ad_a,
            "prompt": prompt_ad_a,
            "negative_prompt": negative_prompt_ad_a,
            "strength": strength_ad_a,
            # "image_list_task" : None,
            "mask_dilation": mask_dilation_a,
            "mask_blur": mask_blur_a,
            "mask_padding": mask_padding_a,
            "inpaint_only": adetailer_inpaint_only,
            "sampler": adetailer_sampler,
        }

        adetailer_params_B = {
            "face_detector_ad": face_detector_ad_b,
            "person_detector_ad": person_detector_ad_b,
            "hand_detector_ad": hand_detector_ad_b,
            "prompt": prompt_ad_b,
            "negative_prompt": negative_prompt_ad_b,
            "strength": strength_ad_b,
            # "image_list_task" : None,
            "mask_dilation": mask_dilation_b,
            "mask_blur": mask_blur_b,
            "mask_padding": mask_padding_b,
        }
        pipe_params = {
            "prompt": prompt,
            "negative_prompt": neg_prompt,
            "img_height": img_height,
            "img_width": img_width,
            "num_images": num_images,
            "num_steps": steps,
            "guidance_scale": cfg,
            "clip_skip": clip_skip,
            "pag_scale": float(pag_scale),
            "seed": seed,
            "image": image_control,
            "preprocessor_name": preprocessor_name,
            "preprocess_resolution": preprocess_resolution,
            "image_resolution": image_resolution,
            "style_prompt": style_prompt if style_prompt else "",
            "style_json_file": "",
            "image_mask": image_mask,  # only for Inpaint
            "strength": strength,  # only for Inpaint or ...
            "low_threshold": low_threshold,
            "high_threshold": high_threshold,
            "value_threshold": value_threshold,
            "distance_threshold": distance_threshold,
            "recolor_gamma_correction": float(recolor_gamma_correction),
            "tile_blur_sigma": int(tile_blur_sigma),
            "lora_A": lora1 if lora1 != "None" else None,
            "lora_scale_A": lora_scale1,
            "lora_B": lora2 if lora2 != "None" else None,
            "lora_scale_B": lora_scale2,
            "lora_C": lora3 if lora3 != "None" else None,
            "lora_scale_C": lora_scale3,
            "lora_D": lora4 if lora4 != "None" else None,
            "lora_scale_D": lora_scale4,
            "lora_E": lora5 if lora5 != "None" else None,
            "lora_scale_E": lora_scale5,
            "lora_F": lora6 if lora6 != "None" else None,
            "lora_scale_F": lora_scale6,
            "lora_G": lora7 if lora7 != "None" else None,
            "lora_scale_G": lora_scale7,
## BEGIN MOD
            "textual_inversion": get_embed_list(self.model.class_name) if textual_inversion else [],
## END MOD
            "syntax_weights": syntax_weights,  # "Classic"
            "sampler": sampler,
            "schedule_type": schedule_type,
            "schedule_prediction_type": schedule_prediction_type,
            "xformers_memory_efficient_attention": xformers_memory_efficient_attention,
            "gui_active": True,
            "loop_generation": loop_generation,
            "controlnet_conditioning_scale": float(controlnet_output_scaling_in_unet),
            "control_guidance_start": float(controlnet_start_threshold),
            "control_guidance_end": float(controlnet_stop_threshold),
            "generator_in_cpu": generator_in_cpu,
            "FreeU": freeu,
            "adetailer_A": adetailer_active_a,
            "adetailer_A_params": adetailer_params_A,
            "adetailer_B": adetailer_active_b,
            "adetailer_B_params": adetailer_params_B,
            "leave_progress_bar": leave_progress_bar,
            "disable_progress_bar": disable_progress_bar,
            "image_previews": image_previews,
            "display_images": display_images,
            "save_generated_images": save_generated_images,
            "filename_pattern": filename_pattern,
            "image_storage_location": image_storage_location,
            "retain_compel_previous_load": retain_compel_previous_load,
            "retain_detailfix_model_previous_load": retain_detailfix_model_previous_load,
            "retain_hires_model_previous_load": retain_hires_model_previous_load,
            "t2i_adapter_preprocessor": t2i_adapter_preprocessor,
            "t2i_adapter_conditioning_scale": float(t2i_adapter_conditioning_scale),
            "t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor),
            "upscaler_model_path": upscaler_model,
            "upscaler_increases_size": upscaler_increases_size,
            "esrgan_tile": esrgan_tile,
            "esrgan_tile_overlap": esrgan_tile_overlap,
            "hires_steps": hires_steps,
            "hires_denoising_strength": hires_denoising_strength,
            "hires_prompt": hires_prompt,
            "hires_negative_prompt": hires_negative_prompt,
            "hires_sampler": hires_sampler,
            "hires_before_adetailer": hires_before_adetailer,
            "hires_after_adetailer": hires_after_adetailer,
            "hires_schedule_type": hires_schedule_type,
            "hires_guidance_scale": hires_guidance_scale,
            "ip_adapter_image": params_ip_img,
            "ip_adapter_mask": params_ip_msk,
            "ip_adapter_model": params_ip_model,
            "ip_adapter_mode": params_ip_mode,
            "ip_adapter_scale": params_ip_scale,
        }

        # kwargs for diffusers pipeline
        if guidance_rescale:
            pipe_params["guidance_rescale"] = guidance_rescale

        self.model.device = torch.device("cuda:0")
        if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * self.model.num_loras:
            self.model.pipe.transformer.to(self.model.device)
            print("transformer to cuda")

        actual_progress = 0
        info_images = gr.update()
        for img, [seed, image_path, metadata] in self.model(**pipe_params):
            info_state = progress_step_bar(actual_progress, steps)
            actual_progress += concurrency
            if image_path:
                info_images = f"Seeds: {str(seed)}"
                if vae_msg:
                    info_images = info_images + "<br>" + vae_msg

                if "Cannot copy out of meta tensor; no data!" in self.model.last_lora_error:
                    msg_ram = "Unable to process the LoRAs due to high RAM usage; please try again later."
                    print(msg_ram)
                    msg_lora += f"<br>{msg_ram}"

                for status, lora in zip(self.model.lora_status, self.model.lora_memory):
                    if status:
                        msg_lora += f"<br>Loaded: {lora}"
                    elif status is not None:
                        msg_lora += f"<br>Error with: {lora}"

                if msg_lora:
                    info_images += msg_lora

                info_images = info_images + "<br>" + "GENERATION DATA:<br>" + escape_html(metadata[-1]) + "<br>-------<br>"

                download_links = "<br>".join(
                    [
                        f'<a href="{path.replace("/images/", "/file=/home/user/app/images/")}" download="{os.path.basename(path)}">Download Image {i + 1}</a>'
                        for i, path in enumerate(image_path)
                    ]
                )
                if save_generated_images:
                    info_images += f"<br>{download_links}"

## BEGIN MOD
                img = save_images(img, metadata)
## END MOD

                info_state = "COMPLETE"

            yield info_state, img, info_images


def dynamic_gpu_duration(func, duration, *args):

    @spaces.GPU(duration=duration)
    def wrapped_func():
        yield from func(*args)

    return wrapped_func()


@spaces.GPU
def dummy_gpu():
    return None


def sd_gen_generate_pipeline(*args):
    gpu_duration_arg = int(args[-1]) if args[-1] else 59
    verbose_arg = int(args[-2])
    load_lora_cpu = args[-3]
    generation_args = args[:-3]
    lora_list = [
        None if item == "None" or item == "" else item # MOD
        for item in [args[7], args[9], args[11], args[13], args[15], args[17], args[19]]
    ]
    lora_status = [None] * sd_gen.model.num_loras

    msg_load_lora = "Updating LoRAs in GPU..."
    if load_lora_cpu:
        msg_load_lora = "Updating LoRAs in CPU..."

    if lora_list != sd_gen.model.lora_memory and lora_list != [None] * sd_gen.model.num_loras:
        yield msg_load_lora, gr.update(), gr.update()

    # Load lora in CPU
    if load_lora_cpu:
        lora_status = sd_gen.model.load_lora_on_the_fly(
            lora_A=lora_list[0], lora_scale_A=args[8],
            lora_B=lora_list[1], lora_scale_B=args[10],
            lora_C=lora_list[2], lora_scale_C=args[12],
            lora_D=lora_list[3], lora_scale_D=args[14],
            lora_E=lora_list[4], lora_scale_E=args[16],
            lora_F=lora_list[5], lora_scale_F=args[18],
            lora_G=lora_list[6], lora_scale_G=args[20],
        )
        print(lora_status)

    sampler_name = args[21]
    schedule_type_name = args[22]
    _, _, msg_sampler = check_scheduler_compatibility(
        sd_gen.model.class_name, sampler_name, schedule_type_name
    )
    if msg_sampler:
        gr.Warning(msg_sampler)

    if verbose_arg:
        for status, lora in zip(lora_status, lora_list):
            if status:
                gr.Info(f"LoRA loaded in CPU: {lora}")
            elif status is not None:
                gr.Warning(f"Failed to load LoRA: {lora}")

        if lora_status == [None] * sd_gen.model.num_loras and sd_gen.model.lora_memory != [None] * sd_gen.model.num_loras and load_lora_cpu:
            lora_cache_msg = ", ".join(
                str(x) for x in sd_gen.model.lora_memory if x is not None
            )
            gr.Info(f"LoRAs in cache: {lora_cache_msg}")

    msg_request = f"Requesting {gpu_duration_arg}s. of GPU time.\nModel: {sd_gen.model.base_model_id}"
    if verbose_arg:
        gr.Info(msg_request)
        print(msg_request)
    yield msg_request.replace("\n", "<br>"), gr.update(), gr.update()

    start_time = time.time()

    # yield from sd_gen.generate_pipeline(*generation_args)
    yield from dynamic_gpu_duration(
        sd_gen.generate_pipeline,
        gpu_duration_arg,
        *generation_args,
    )

    end_time = time.time()
    execution_time = end_time - start_time
    msg_task_complete = (
        f"GPU task complete in: {int(round(execution_time, 0) + 1)} seconds"
    )

    if verbose_arg:
        gr.Info(msg_task_complete)
        print(msg_task_complete)

    yield msg_task_complete, gr.update(), gr.update()


@spaces.GPU(duration=15)
def esrgan_upscale(image, upscaler_name, upscaler_size):
    if image is None: return None

    from stablepy.diffusers_vanilla.utils import save_pil_image_with_metadata
    from stablepy import UpscalerESRGAN

    exif_image = extract_exif_data(image)

    url_upscaler = UPSCALER_DICT_GUI[upscaler_name]
    directory_upscalers = 'upscalers'
    os.makedirs(directory_upscalers, exist_ok=True)
    if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
        download_things(directory_upscalers, url_upscaler, HF_TOKEN)

    scaler_beta = UpscalerESRGAN(0, 0)
    image_up = scaler_beta.upscale(image, upscaler_size, f"./upscalers/{url_upscaler.split('/')[-1]}")

    image_path = save_pil_image_with_metadata(image_up, f'{os.getcwd()}/up_images', exif_image)

    return image_path


# https://huggingface.co/spaces/BestWishYsh/ConsisID-preview-Space/discussions/1#674969a022b99c122af5d407
dynamic_gpu_duration.zerogpu = True
sd_gen_generate_pipeline.zerogpu = True
sd_gen = GuiSD()


## BEGIN MOD
CSS ="""

.gradio-container, #main { width:100%; height:100%; max-width:100%; padding-left:0; padding-right:0; margin-left:0; margin-right:0; }

.contain { display:flex; flex-direction:column; }

#component-0 { width:100%; height:100%; }

#gallery { flex-grow:1; }

#load_model { height: 50px; }

.lora { min-width:480px; }

#model-info { text-align:center; }

.title { font-size: 3em; align-items: center; text-align: center; }

.info { align-items: center; text-align: center; }

.desc [src$='#float'] { float: right; margin: 20px; }

"""

with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, css=CSS, delete_cache=(60, 3600)) as app:
    gr.Markdown("# 🧩 DiffuseCraft Mod", elem_classes="title")
    gr.Markdown("This space is a modification of [r3gm's DiffuseCraft](https://huggingface.co/spaces/r3gm/DiffuseCraft).", elem_classes="info")
    with gr.Column():
        with gr.Tab("Generation"):
            with gr.Row():
                with gr.Column(scale=1):

                    def update_task_options(model_name, task_name):
                        new_choices = MODEL_TYPE_TASK[get_model_type(valid_model_name(model_name))]

                        if task_name not in new_choices:
                            task_name = "txt2img"

                        return gr.update(value=task_name, choices=new_choices)
                    
                    interface_mode_gui = gr.Radio(label="Quick settings", choices=["Simple", "Standard", "Fast", "LoRA"], value="Standard")
                    with gr.Accordion("Model and Task", open=False) as menu_model:
                        task_gui = gr.Dropdown(label="Task", choices=SDXL_TASK, value=TASK_MODEL_LIST[0])
                        with gr.Group():
                            model_name_gui = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.", choices=get_tupled_model_list(model_list), value="votepurchase/animagine-xl-3.1", allow_custom_value=True)
                            model_info_gui = gr.Markdown(elem_classes="info")
                        with gr.Row():
                            quick_model_type_gui = gr.Radio(label="Model Type", choices=["None", "Auto", "Animagine", "Pony"], value="Auto", interactive=True)
                            quick_genre_gui = gr.Radio(label="Genre", choices=["Anime", "Photo"], value="Anime", interactive=True)
                            quick_speed_gui = gr.Radio(label="Speed", choices=["Fast", "Standard", "Heavy"], value="Standard", interactive=True)
                            quick_aspect_gui = gr.Radio(label="Aspect Ratio", choices=["1:1", "3:4"], value="1:1", interactive=True)
                        with gr.Row():
                            quality_selector_gui = gr.Dropdown(label="Quality Tags Presets", interactive=True, choices=list(preset_quality.keys()), value="None")
                            style_selector_gui = gr.Dropdown(label="Style Preset", interactive=True, choices=list(preset_styles.keys()), value="None")
                            sampler_selector_gui = gr.Dropdown(label="Sampler Quick Settings", interactive=True, choices=list(preset_sampler_setting.keys()), value="None")
                            optimization_gui = gr.Dropdown(label="Optimization for SDXL", choices=list(optimization_list.keys()), value="None", interactive=True)
                    with gr.Group():
                        with gr.Accordion("Prompt from Image", open=False) as menu_from_image:
                            input_image_gui = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
                            with gr.Accordion(label="Advanced options", open=False):
                                with gr.Row():
                                    general_threshold_gui = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
                                    character_threshold_gui = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
                                with gr.Row():
                                    tag_type_gui = gr.Radio(label="Convert tags to", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
                                    recom_prompt_gui = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
                                    keep_tags_gui = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
                                image_algorithms = gr.CheckboxGroup(["Use WD Tagger"], label="Algorithms", value=["Use WD Tagger"], visible=False)
                            generate_from_image_btn_gui = gr.Button(value="GENERATE TAGS FROM IMAGE")
                        prompt_gui = gr.Textbox(lines=6, placeholder="1girl, solo, ...", label="Prompt", show_copy_button=True)
                        with gr.Accordion("Negative prompt, etc.", open=False) as menu_negative:
                            neg_prompt_gui = gr.Textbox(lines=3, placeholder="Enter Neg prompt", label="Negative prompt", value="lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, worst quality, low quality, very displeasing, (bad)", show_copy_button=True)
                            translate_prompt_button = gr.Button(value="Translate prompt to English", size="sm", variant="secondary")
                            with gr.Row():
                                insert_prompt_gui = gr.Radio(label="Insert reccomended positive / negative prompt", choices=["None", "Auto", "Animagine", "Pony"], value="Auto", interactive=True)                          
                                prompt_type_gui = gr.Radio(label="Convert tags to", choices=["danbooru", "e621"], value="e621", visible=False)
                                prompt_type_button = gr.Button(value="Convert prompt to Pony e621 style", size="sm", variant="secondary")
                            with gr.Row():
                                character_dbt = gr.Textbox(lines=1, placeholder="kafuu chino, ...", label="Character names")
                                series_dbt = gr.Textbox(lines=1, placeholder="Is the order a rabbit?, ...", label="Series names")
                                random_character_gui = gr.Button(value="Random character 🎲", size="sm", variant="secondary")
                                model_name_dbt = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0], visible=False)
                                aspect_ratio_dbt = gr.Radio(label="Aspect ratio", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square", visible=False)
                                length_dbt = gr.Radio(label="Length", choices=list(V2_LENGTH_OPTIONS), value="very_long", visible=False)
                                identity_dbt = gr.Radio(label="Keep identity", choices=list(V2_IDENTITY_OPTIONS), value="lax", visible=False)                    
                                ban_tags_dbt = gr.Textbox(label="Ban tags", placeholder="alternate costumen, ...", value="futanari, censored, furry, furrification", visible=False)
                                copy_button_dbt = gr.Button(value="Copy to clipboard", visible=False)
                            rating_dbt = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="sfw")
                            generate_db_random_button = gr.Button(value="EXTEND PROMPT 🎲")
                        with gr.Row():
                            translate_prompt_gui = gr.Button(value="Translate Prompt 📝", variant="secondary", size="sm")
                            set_random_seed = gr.Button(value="Seed 🎲", variant="secondary", size="sm")
                            set_params_gui = gr.Button(value="Params ↙️", variant="secondary", size="sm")
                            clear_prompt_gui = gr.Button(value="Clear 🗑️", variant="secondary", size="sm")

                    generate_button = gr.Button(value="GENERATE IMAGE", size="lg", variant="primary")

                    model_name_gui.change(
                        update_task_options,
                        [model_name_gui, task_gui],
                        [task_gui],
                    )

                    load_model_gui = gr.HTML(elem_id="load_model", elem_classes="contain")

                    result_images = gr.Gallery(
                        label="Generated images",
                        show_label=False,
                        elem_id="gallery",
                        #columns=[2],
                        columns=[1],
                        #rows=[2],
                        rows=[1],
                        object_fit="contain",
                        # height="auto",
                        interactive=False,
                        preview=False,
                        show_share_button=False,
                        show_download_button=True,
                        selected_index=50,
                        format="png",
                    )

                    result_images_files = gr.Files(interactive=False, visible=False)

                    actual_task_info = gr.HTML()

                    with gr.Accordion("History", open=False):
                        history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", format="png", interactive=False, show_share_button=False,
                        show_download_button=True)
                        history_files = gr.Files(interactive=False, visible=False)
                        history_clear_button = gr.Button(value="Clear History", variant="secondary")
                        history_clear_button.click(lambda: ([], []), None, [history_gallery, history_files], queue=False, show_api=False)

                    with gr.Row(equal_height=False, variant="default"):
                        gpu_duration_gui = gr.Number(minimum=5, maximum=240, value=59, show_label=False, container=False, info="GPU time duration (seconds)")
                        with gr.Column():
                            verbose_info_gui = gr.Checkbox(value=False, container=False, label="Status info")
                            load_lora_cpu_gui = gr.Checkbox(value=False, container=False, label="Load LoRAs on CPU")

                with gr.Column(scale=1):
                    with gr.Accordion("Generation settings", open=False, visible=True) as menu_gen:
                        with gr.Row():
                            img_width_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Width")
                            img_height_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Height")
                            steps_gui = gr.Slider(minimum=1, maximum=100, step=1, value=28, label="Steps")
                            cfg_gui = gr.Slider(minimum=0, maximum=30, step=0.5, value=7.0, label="CFG")
                            guidance_rescale_gui = gr.Slider(label="CFG rescale:", value=0., step=0.01, minimum=0., maximum=1.5)
                        with gr.Row():
                            seed_gui = gr.Number(minimum=-1, maximum=2**32-1, value=-1, label="Seed")
                            pag_scale_gui = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="PAG Scale")
                            num_images_gui = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Images")
                            clip_skip_gui = gr.Checkbox(value=False, label="Layer 2 Clip Skip")
                            free_u_gui = gr.Checkbox(value=False, label="FreeU")
                        with gr.Row():
                            sampler_gui = gr.Dropdown(label="Sampler", choices=scheduler_names, value="Euler")
                            schedule_type_gui = gr.Dropdown(label="Schedule type", choices=SCHEDULE_TYPE_OPTIONS, value=SCHEDULE_TYPE_OPTIONS[0])
                            schedule_prediction_type_gui = gr.Dropdown(label="Discrete Sampling Type", choices=SCHEDULE_PREDICTION_TYPE_OPTIONS, value=SCHEDULE_PREDICTION_TYPE_OPTIONS[0])
                            vae_model_gui = gr.Dropdown(label="VAE Model", choices=vae_model_list, value=vae_model_list[0])
                            prompt_syntax_gui = gr.Dropdown(label="Prompt Syntax", choices=PROMPT_W_OPTIONS, value=PROMPT_W_OPTIONS[1][1])

                        with gr.Row(equal_height=False):

                            def run_set_params_gui(base_prompt, name_model):
                                valid_receptors = {  # default values
                                    "prompt": gr.update(value=base_prompt),
                                    "neg_prompt": gr.update(value=""),
                                    "Steps": gr.update(value=30),
                                    "width": gr.update(value=1024),
                                    "height": gr.update(value=1024),
                                    "Seed": gr.update(value=-1),
                                    "Sampler": gr.update(value="Euler"),
                                    "CFG scale": gr.update(value=7.),  # cfg
                                    "Clip skip": gr.update(value=True),
                                    "Model": gr.update(value=name_model),
                                    "Schedule type": gr.update(value="Automatic"),
                                    "PAG": gr.update(value=.0),
                                    "FreeU": gr.update(value=False),
                                }
                                valid_keys = list(valid_receptors.keys())

                                parameters = extract_parameters(base_prompt)
                                # print(parameters)

                                if "Sampler" in parameters:
                                    value_sampler = parameters["Sampler"]
                                    for s_type in SCHEDULE_TYPE_OPTIONS:
                                        if s_type in value_sampler:
                                            value_sampler = value_sampler.replace(s_type, "").strip()
                                            parameters["Sampler"] = value_sampler
                                            parameters["Schedule type"] = s_type

                                for key, val in parameters.items():
                                    # print(val)
                                    if key in valid_keys:
                                        try:
                                            if key == "Sampler":
                                                if val not in scheduler_names:
                                                    continue
                                            if key == "Schedule type":
                                                if val not in SCHEDULE_TYPE_OPTIONS:
                                                    val = "Automatic"
                                            elif key == "Clip skip":
                                                if "," in str(val):
                                                    val = val.replace(",", "")
                                                if int(val) >= 2:
                                                    val = True
                                            if key == "prompt":
                                                if ">" in val and "<" in val:
                                                    val = re.sub(r'<[^>]+>', '', val)
                                                    print("Removed LoRA written in the prompt")
                                            if key in ["prompt", "neg_prompt"]:
                                                val = re.sub(r'\s+', ' ', re.sub(r',+', ',', val)).strip()
                                            if key in ["Steps", "width", "height", "Seed"]:
                                                val = int(val)
                                            if key == "FreeU":
                                                val = True
                                            if key in ["CFG scale", "PAG"]:
                                                val = float(val)
                                            if key == "Model":
                                                filtered_models = [m for m in model_list if val in m]
                                                if filtered_models:
                                                    val = filtered_models[0]
                                                else:
                                                    val = name_model
                                            if key == "Seed":
                                                continue
                                            valid_receptors[key] = gr.update(value=val)
                                            # print(val, type(val))
                                            # print(valid_receptors)
                                        except Exception as e:
                                            print(str(e))
                                return [value for value in valid_receptors.values()]

                            set_params_gui.click(
                                run_set_params_gui, [prompt_gui, model_name_gui], [
                                    prompt_gui,
                                    neg_prompt_gui,
                                    steps_gui,
                                    img_width_gui,
                                    img_height_gui,
                                    seed_gui,
                                    sampler_gui,
                                    cfg_gui,
                                    clip_skip_gui,
                                    model_name_gui,
                                    schedule_type_gui,
                                    pag_scale_gui,
                                    free_u_gui,
                                ],
                            )

                            def run_clear_prompt_gui():
                                return gr.update(value=""), gr.update(value="")
                            clear_prompt_gui.click(
                                run_clear_prompt_gui, [], [prompt_gui, neg_prompt_gui]
                            )

                            def run_set_random_seed():
                                return -1
                            set_random_seed.click(
                                run_set_random_seed, [], seed_gui
                            )

                    with gr.Accordion("LoRA", open=False, visible=True) as menu_lora:
                        def lora_dropdown(label, visible=True):
                            return gr.Dropdown(label=label, choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320, visible=visible)

                        def lora_scale_slider(label, visible=True):
                            return gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label=label, visible=visible)
                        
                        def lora_textbox(label):
                            return gr.Textbox(label=label, info="Example of prompt:", value="None", show_copy_button=True, interactive=False, visible=False)
                        
                        with gr.Row():
                            with gr.Column():
                                lora1_gui = lora_dropdown("LoRA1")
                                lora_scale_1_gui = lora_scale_slider("LoRA Scale 1")
                                with gr.Row():
                                    with gr.Group():
                                        lora1_info_gui = lora_textbox("LoRA1 prompts")
                                        lora1_copy_gui = gr.Button(value="Copy example to prompt", visible=False)
                                    lora1_desc_gui = gr.Markdown(value="", visible=False)
                            with gr.Column():
                                lora2_gui = lora_dropdown("LoRA2")
                                lora_scale_2_gui = lora_scale_slider("LoRA Scale 2")
                                with gr.Row():
                                    with gr.Group():
                                        lora2_info_gui = lora_textbox("LoRA2 prompts")
                                        lora2_copy_gui = gr.Button(value="Copy example to prompt", visible=False)
                                    lora2_desc_gui = gr.Markdown(value="", visible=False)
                            with gr.Column():
                                lora3_gui = lora_dropdown("LoRA3")
                                lora_scale_3_gui = lora_scale_slider("LoRA Scale 3")
                                with gr.Row():
                                    with gr.Group():
                                        lora3_info_gui = lora_textbox("LoRA3 prompts")
                                        lora3_copy_gui = gr.Button(value="Copy example to prompt", visible=False)
                                    lora3_desc_gui = gr.Markdown(value="", visible=False)
                            with gr.Column():
                                lora4_gui = lora_dropdown("LoRA4")
                                lora_scale_4_gui = lora_scale_slider("LoRA Scale 4")
                                with gr.Row():
                                    with gr.Group():
                                        lora4_info_gui = lora_textbox("LoRA4 prompts")
                                        lora4_copy_gui = gr.Button(value="Copy example to prompt", visible=False)
                                    lora4_desc_gui = gr.Markdown(value="", visible=False)
                            with gr.Column():
                                lora5_gui = lora_dropdown("LoRA5")
                                lora_scale_5_gui = lora_scale_slider("LoRA Scale 5")
                                with gr.Row():
                                    with gr.Group():
                                        lora5_info_gui = lora_textbox("LoRA5 prompts")
                                        lora5_copy_gui = gr.Button(value="Copy example to prompt", visible=False)
                                    lora5_desc_gui = gr.Markdown(value="", visible=False)
                            with gr.Column():
                                lora6_gui = lora_dropdown("LoRA6", visible=False)
                                lora_scale_6_gui = lora_scale_slider("LoRA Scale 6", visible=False)
                                with gr.Row():
                                    with gr.Group():
                                        lora6_info_gui = lora_textbox("LoRA6 prompts")
                                        lora6_copy_gui = gr.Button(value="Copy example to prompt", visible=False)
                                    lora6_desc_gui = gr.Markdown(value="", visible=False)
                            with gr.Column():
                                lora7_gui = lora_dropdown("LoRA7", visible=False)
                                lora_scale_7_gui = lora_scale_slider("LoRA Scale 7", visible=False)
                                with gr.Row():
                                    with gr.Group():
                                        lora7_info_gui = lora_textbox("LoRA7 prompts")
                                        lora7_copy_gui = gr.Button(value="Copy example to prompt", visible=False)
                                    lora7_desc_gui = gr.Markdown(value="", visible=False)
                        with gr.Accordion("From URL", open=True, visible=True):
                            with gr.Row():
                                search_civitai_basemodel_lora = gr.CheckboxGroup(label="Search LoRA for", choices=CIVITAI_BASEMODEL, value=["Pony", "Illustrious", "SDXL 1.0"])
                                search_civitai_sort_lora = gr.Radio(label="Sort", choices=CIVITAI_SORT, value="Highest Rated")
                                search_civitai_period_lora = gr.Radio(label="Period", choices=CIVITAI_PERIOD, value="AllTime")
                            with gr.Row():
                                search_civitai_query_lora = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1)
                                search_civitai_tag_lora = gr.Dropdown(label="Tag", choices=get_civitai_tag(), value=get_civitai_tag()[0], allow_custom_value=True)
                                search_civitai_user_lora = gr.Textbox(label="Username", lines=1)
                            search_civitai_button_lora = gr.Button("Search on Civitai")
                            search_civitai_desc_lora = gr.Markdown(value="", visible=False, elem_classes="desc")
                            with gr.Accordion("Select from Gallery", open=False):
                                search_civitai_gallery_lora = gr.Gallery([], label="Results", allow_preview=False, columns=5, show_share_button=False, interactive=False)
                            search_civitai_result_lora = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
                            with gr.Row():
                                text_lora = gr.Textbox(label="LoRA's download URL", placeholder="https://civitai.com/api/download/models/28907", info="It has to be .safetensors files, and you can also download them from Hugging Face.", lines=1, scale=4)
                                romanize_text = gr.Checkbox(value=False, label="Transliterate name", scale=1, visible=False)
                            button_lora = gr.Button("Get and Refresh the LoRA Lists")
                            new_lora_status = gr.HTML()
                        with gr.Accordion("From Local", open=True, visible=True):
                            file_output_lora = gr.File(label="Uploaded LoRA", file_types=['.ckpt', '.pt', '.pth', '.safetensors', '.bin'], file_count="multiple", interactive=False, visible=False)
                            upload_button_lora = gr.UploadButton(label="Upload LoRA from your disk (very slow)", file_types=['.ckpt', '.pt', '.pth', '.safetensors', '.bin'], file_count="multiple")

                    with gr.Column() as menu_advanced:
                        with gr.Accordion("Hires fix", open=False, visible=True) as menu_hires:
                            upscaler_model_path_gui = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS, value=UPSCALER_KEYS[0])
                            with gr.Row():
                                upscaler_increases_size_gui = gr.Slider(minimum=1.1, maximum=6., step=0.1, value=1.0, label="Upscale by")
                                esrgan_tile_gui = gr.Slider(minimum=0, value=100, maximum=500, step=1, label="ESRGAN Tile")
                                esrgan_tile_overlap_gui = gr.Slider(minimum=1, maximum=200, step=1, value=10, label="ESRGAN Tile Overlap")
                            with gr.Row():
                                hires_steps_gui = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps")
                                hires_denoising_strength_gui = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength")
                                hires_sampler_gui = gr.Dropdown(label="Hires Sampler", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0])
                                hires_schedule_list = ["Use same schedule type"] + SCHEDULE_TYPE_OPTIONS
                                hires_schedule_type_gui = gr.Dropdown(label="Hires Schedule type", choices=hires_schedule_list, value=hires_schedule_list[0])
                                hires_guidance_scale_gui = gr.Slider(minimum=-1., maximum=30., step=0.5, value=-1., label="Hires CFG", info="If the value is -1, the main CFG will be used")
                            hires_prompt_gui = gr.Textbox(label="Hires Prompt", placeholder="Main prompt will be use", lines=3)
                            hires_negative_prompt_gui = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3)

                        with gr.Accordion("Detailfix", open=False, visible=True) as menu_detail:
                            with gr.Row():

                                # Adetailer Inpaint Only
                                adetailer_inpaint_only_gui = gr.Checkbox(label="Inpaint only", value=True)

                                # Adetailer Verbose
                                adetailer_verbose_gui = gr.Checkbox(label="Verbose", value=False)

                                # Adetailer Sampler
                                adetailer_sampler_gui = gr.Dropdown(label="Adetailer sampler:", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0])

                            with gr.Accordion("Detailfix A", open=True, visible=True):
                                # Adetailer A
                                adetailer_active_a_gui = gr.Checkbox(label="Enable Adetailer A", value=False)
                                prompt_ad_a_gui = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3)
                                negative_prompt_ad_a_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3)
                                with gr.Row():
                                    strength_ad_a_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0)
                                    face_detector_ad_a_gui = gr.Checkbox(label="Face detector", value=False)
                                    person_detector_ad_a_gui = gr.Checkbox(label="Person detector", value=True)
                                    hand_detector_ad_a_gui = gr.Checkbox(label="Hand detector", value=False)
                                with gr.Row():
                                    mask_dilation_a_gui = gr.Number(label="Mask dilation:", value=4, minimum=1)
                                    mask_blur_a_gui = gr.Number(label="Mask blur:", value=4, minimum=1)
                                    mask_padding_a_gui = gr.Number(label="Mask padding:", value=32, minimum=1)

                            with gr.Accordion("Detailfix B", open=True, visible=True):
                                # Adetailer B
                                adetailer_active_b_gui = gr.Checkbox(label="Enable Adetailer B", value=False)
                                prompt_ad_b_gui = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3)
                                negative_prompt_ad_b_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3)
                                with gr.Row():
                                    strength_ad_b_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0)
                                    face_detector_ad_b_gui = gr.Checkbox(label="Face detector", value=False)
                                    person_detector_ad_b_gui = gr.Checkbox(label="Person detector", value=True)
                                    hand_detector_ad_b_gui = gr.Checkbox(label="Hand detector", value=False)
                                with gr.Row():
                                    mask_dilation_b_gui = gr.Number(label="Mask dilation:", value=4, minimum=1)
                                    mask_blur_b_gui = gr.Number(label="Mask blur:", value=4, minimum=1)
                                    mask_padding_b_gui = gr.Number(label="Mask padding:", value=32, minimum=1)
                                    
                        with gr.Accordion("Textual inversion", open=False, visible=True) as menu_ti:
                            active_textual_inversion_gui = gr.Checkbox(value=False, label="Active Textual Inversion in prompt")
                            use_textual_inversion_gui = gr.CheckboxGroup(choices=get_embed_list(get_model_pipeline(model_name_gui.value)) if active_textual_inversion_gui.value else [], value=None, label="Use Textual Invertion in prompt")
                            def update_textual_inversion_gui(active_textual_inversion_gui, model_name_gui):
                                return gr.update(choices=get_embed_list(get_model_pipeline(model_name_gui)) if active_textual_inversion_gui else [])
                            active_textual_inversion_gui.change(update_textual_inversion_gui, [active_textual_inversion_gui, model_name_gui], [use_textual_inversion_gui])
                            model_name_gui.change(update_textual_inversion_gui, [active_textual_inversion_gui, model_name_gui], [use_textual_inversion_gui])

                        with gr.Accordion("ControlNet / Img2img / Inpaint", open=False, visible=True) as menu_i2i:
                            with gr.Row():
                                image_control = gr.Image(label="Image ControlNet/Inpaint/Img2img", type="filepath")
                                image_mask_gui = gr.Image(label="Image Mask", type="filepath")
                            with gr.Row():
                                strength_gui = gr.Slider(
                                    minimum=0.01, maximum=1.0, step=0.01, value=0.55, label="Strength",
                                    info="This option adjusts the level of changes for img2img and inpainting."
                                )
                                image_resolution_gui = gr.Slider(
                                    minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution",
                                    info="The maximum proportional size of the generated image based on the uploaded image."
                                )
                            with gr.Row():
                                controlnet_model_gui = gr.Dropdown(label="ControlNet model", choices=DIFFUSERS_CONTROLNET_MODEL, value=DIFFUSERS_CONTROLNET_MODEL[0])
                                control_net_output_scaling_gui = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet")
                                control_net_start_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)")
                                control_net_stop_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)")
                            with gr.Row():
                                preprocessor_name_gui = gr.Dropdown(label="Preprocessor Name", choices=TASK_AND_PREPROCESSORS["canny"])
                                preprocess_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocessor Resolution")
                                low_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="'CANNY' low threshold")
                                high_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="'CANNY' high threshold")

                                def change_preprocessor_choices(task):
                                    task = TASK_STABLEPY[task]
                                    if task in TASK_AND_PREPROCESSORS.keys():
                                        choices_task = TASK_AND_PREPROCESSORS[task]
                                    else:
                                        choices_task = TASK_AND_PREPROCESSORS["canny"]
                                    return gr.update(choices=choices_task, value=choices_task[0])

                                task_gui.change(
                                    change_preprocessor_choices,
                                    [task_gui],
                                    [preprocessor_name_gui],
                                )

                            with gr.Row():
                                value_threshold_gui = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="'MLSD' Hough value threshold")
                                distance_threshold_gui = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="'MLSD' Hough distance threshold")
                                recolor_gamma_correction_gui = gr.Number(minimum=0., maximum=25., value=1., step=0.001, label="'RECOLOR' gamma correction")
                                tile_blur_sigma_gui = gr.Number(minimum=0, maximum=100, value=9, step=1, label="'TILE' blur sigma")

                        with gr.Accordion("IP-Adapter", open=False, visible=True) as menu_ipa:

                            IP_MODELS = sorted(list(set(IP_ADAPTERS_SD + IP_ADAPTERS_SDXL)))
                            MODE_IP_OPTIONS = ["original", "style", "layout", "style+layout"]

                            with gr.Accordion("IP-Adapter 1", open=True, visible=True):
                                with gr.Row():
                                    image_ip1 = gr.Image(label="IP Image", type="filepath")
                                    mask_ip1 = gr.Image(label="IP Mask", type="filepath")
                                with gr.Row():
                                    model_ip1 = gr.Dropdown(value="plus_face", label="Model", choices=IP_MODELS)
                                    mode_ip1 = gr.Dropdown(value="original", label="Mode", choices=MODE_IP_OPTIONS)
                                scale_ip1 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale")
                            with gr.Accordion("IP-Adapter 2", open=True, visible=True):
                                with gr.Row():
                                    image_ip2 = gr.Image(label="IP Image", type="filepath")
                                    mask_ip2 = gr.Image(label="IP Mask (optional)", type="filepath")
                                with gr.Row():
                                    model_ip2 = gr.Dropdown(value="base", label="Model", choices=IP_MODELS)
                                    mode_ip2 = gr.Dropdown(value="style", label="Mode", choices=MODE_IP_OPTIONS)
                                scale_ip2 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale")

                        with gr.Accordion("T2I adapter", open=False, visible=False) as menu_t2i:
                            t2i_adapter_preprocessor_gui = gr.Checkbox(value=True, label="T2i Adapter Preprocessor")
                            with gr.Row():
                                adapter_conditioning_scale_gui = gr.Slider(minimum=0, maximum=5., step=0.1, value=1, label="Adapter Conditioning Scale")
                                adapter_conditioning_factor_gui = gr.Slider(minimum=0, maximum=1., step=0.01, value=0.55, label="Adapter Conditioning Factor (%)")

                        with gr.Accordion("Styles", open=False, visible=True) as menu_styles:

                            try:
                                style_names_found = sd_gen.model.STYLE_NAMES
                            except Exception:
                                style_names_found = STYLE_NAMES

                            style_prompt_gui = gr.Dropdown(
                                style_names_found,
                                multiselect=True,
                                value=None,
                                label="Style Prompt",
                                interactive=True,
                            )
                            style_json_gui = gr.File(label="Style JSON File")
                            style_button = gr.Button("Load styles")

                            def load_json_style_file(json):
                                if not sd_gen.model:
                                    gr.Info("First load the model")
                                    return gr.update(value=None, choices=STYLE_NAMES)

                                sd_gen.model.load_style_file(json)
                                gr.Info(f"{len(sd_gen.model.STYLE_NAMES)} styles loaded")
                                return gr.update(value=None, choices=sd_gen.model.STYLE_NAMES)

                            style_button.click(load_json_style_file, [style_json_gui], [style_prompt_gui])

                        with gr.Accordion("Other settings", open=False, visible=True) as menu_other:
                            with gr.Row():
                                save_generated_images_gui = gr.Checkbox(value=False, label="Save Generated Images")
                                filename_pattern_gui = gr.Textbox(label="Filename pattern", value="model,seed", placeholder="model,seed,sampler,schedule_type,img_width,img_height,guidance_scale,num_steps,vae,prompt_section,neg_prompt_section", lines=1)
                            with gr.Row():
                                hires_before_adetailer_gui = gr.Checkbox(value=False, label="Hires Before Adetailer")
                                hires_after_adetailer_gui = gr.Checkbox(value=True, label="Hires After Adetailer")
                                generator_in_cpu_gui = gr.Checkbox(value=False, label="Generator in CPU")

                        with gr.Accordion("More settings", open=False, visible=False):
                            loop_generation_gui = gr.Slider(minimum=1, value=1, label="Loop Generation")
                            retain_task_cache_gui = gr.Checkbox(value=True, label="Retain task model in cache")
                            leave_progress_bar_gui = gr.Checkbox(value=True, label="Leave Progress Bar")
                            disable_progress_bar_gui = gr.Checkbox(value=False, label="Disable Progress Bar")
                            display_images_gui = gr.Checkbox(value=False, label="Display Images")
                            image_previews_gui = gr.Checkbox(value=True, label="Image Previews")
                            image_storage_location_gui = gr.Textbox(value="./images", label="Image Storage Location")
                            retain_compel_previous_load_gui = gr.Checkbox(value=False, label="Retain Compel Previous Load")
                            retain_detailfix_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Detailfix Model Previous Load")
                            retain_hires_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Hires Model Previous Load")
                            xformers_memory_efficient_attention_gui = gr.Checkbox(value=False, label="Xformers Memory Efficient Attention")

            with gr.Accordion("Examples and help", open=True, visible=True) as menu_example:
                gr.Examples(
                    examples=EXAMPLES_GUI,
                    fn=sd_gen.generate_pipeline,
                    inputs=[
                        prompt_gui,
                        neg_prompt_gui,
                        num_images_gui,
                        steps_gui,
                        cfg_gui,
                        clip_skip_gui,
                        seed_gui,
                        sampler_gui,
                        img_height_gui,
                        img_width_gui,
                        model_name_gui,
                    ],
                    outputs=[load_model_gui, result_images, actual_task_info],
                    cache_examples=False,
                    #elem_id="examples",
                )

            gr.Markdown(RESOURCES)
## END MOD

        with gr.Tab("Inpaint mask maker", render=True):

            def create_mask_now(img, invert):            
                import numpy as np
                import time

                time.sleep(0.5)

                transparent_image = img["layers"][0]

                # Extract the alpha channel
                alpha_channel = np.array(transparent_image)[:, :, 3]

                # Create a binary mask by thresholding the alpha channel
                binary_mask = alpha_channel > 1

                if invert:
                    print("Invert")
                    # Invert the binary mask so that the drawn shape is white and the rest is black
                    binary_mask = np.invert(binary_mask)

                # Convert the binary mask to a 3-channel RGB mask
                rgb_mask = np.stack((binary_mask,) * 3, axis=-1)

                # Convert the mask to uint8
                rgb_mask = rgb_mask.astype(np.uint8) * 255

                return img["background"], rgb_mask

            with gr.Row():
                with gr.Column(scale=2):
                    # image_base = gr.ImageEditor(label="Base image", show_label=True, brush=gr.Brush(colors=["#000000"]))
                    image_base = gr.ImageEditor(
                        sources=["upload", "clipboard"],
                        # crop_size="1:1",
                        # enable crop (or disable it)
                        # transforms=["crop"],
                        brush=gr.Brush(
                            default_size="16",  # or leave it as 'auto'
                            color_mode="fixed",  # 'fixed' hides the user swatches and colorpicker, 'defaults' shows it
                            # default_color="black", # html names are supported
                            colors=[
                                "rgba(0, 0, 0, 1)",  # rgb(a)
                                "rgba(0, 0, 0, 0.1)",
                                "rgba(255, 255, 255, 0.1)",
                                # "hsl(360, 120, 120)" # in fact any valid colorstring
                            ]
                        ),
                        eraser=gr.Eraser(default_size="16")
                    )
                    invert_mask = gr.Checkbox(value=False, label="Invert mask")
                    btn = gr.Button("Create mask")
                with gr.Column(scale=1):
                    img_source = gr.Image(interactive=False)
                    img_result = gr.Image(label="Mask image", show_label=True, interactive=False)
                    btn_send = gr.Button("Send to the first tab")

                btn.click(create_mask_now, [image_base, invert_mask], [img_source, img_result])

                def send_img(img_source, img_result):
                    return img_source, img_result
                btn_send.click(send_img, [img_source, img_result], [image_control, image_mask_gui])

        with gr.Tab("PNG Info"):
            with gr.Row():
                with gr.Column():
                    image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])

                with gr.Column():
                    result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99)

                    image_metadata.change(
                        fn=extract_exif_data,
                        inputs=[image_metadata],
                        outputs=[result_metadata],
                    )

        with gr.Tab("Upscaler"):
            with gr.Row():
                with gr.Column():
                    image_up_tab = gr.Image(label="Image", type="pil", sources=["upload"])
                    upscaler_tab = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS[9:], value=UPSCALER_KEYS[11])
                    upscaler_size_tab = gr.Slider(minimum=1., maximum=4., step=0.1, value=1.1, label="Upscale by")
                    generate_button_up_tab = gr.Button(value="START UPSCALE", variant="primary")

                with gr.Column():
                    result_up_tab = gr.Image(label="Result", type="pil", interactive=False, format="png")

                    generate_button_up_tab.click(
                        fn=esrgan_upscale,
                        inputs=[image_up_tab, upscaler_tab, upscaler_size_tab],
                        outputs=[result_up_tab],
                    )

        with gr.Tab("Preprocessor", render=True):
            preprocessor_tab()

## BEGIN MOD
        interface_mode_gui.change(
            change_interface_mode,
            [interface_mode_gui],
            [menu_model, menu_from_image, menu_negative, menu_gen, menu_hires, menu_lora, menu_advanced,
              menu_example, task_gui, quick_speed_gui],
            queue=False,
        )
        model_name_gui.change(get_t2i_model_info, [model_name_gui], [model_info_gui], queue=False)
        translate_prompt_gui.click(translate_to_en, [prompt_gui], [prompt_gui], queue=False)\
        .then(translate_to_en, [neg_prompt_gui], [neg_prompt_gui], queue=False)

        gr.on(
            triggers=[quick_model_type_gui.change, quick_genre_gui.change, quick_speed_gui.change, quick_aspect_gui.change],
            fn=set_quick_presets,
            inputs=[quick_genre_gui, quick_model_type_gui, quick_speed_gui, quick_aspect_gui],
            outputs=[quality_selector_gui, style_selector_gui, sampler_selector_gui, optimization_gui, insert_prompt_gui],
            queue=False,
            trigger_mode="once",
        )
        gr.on(
            triggers=[quality_selector_gui.change, style_selector_gui.change, insert_prompt_gui.change],
            fn=process_style_prompt,
            inputs=[prompt_gui, neg_prompt_gui, style_selector_gui, quality_selector_gui, insert_prompt_gui],
            outputs=[prompt_gui, neg_prompt_gui, quick_model_type_gui],
            queue=False,
            trigger_mode="once",
        )
        sampler_selector_gui.change(set_sampler_settings, [sampler_selector_gui], [sampler_gui, steps_gui, cfg_gui, clip_skip_gui, img_width_gui, img_height_gui, optimization_gui], queue=False)
        optimization_gui.change(set_optimization, [optimization_gui, steps_gui, cfg_gui, sampler_gui, clip_skip_gui, lora5_gui, lora_scale_5_gui], [steps_gui, cfg_gui, sampler_gui, clip_skip_gui, lora5_gui, lora_scale_5_gui], queue=False)

        gr.on(
            triggers=[lora1_gui.change, lora_scale_1_gui.change, lora2_gui.change, lora_scale_2_gui.change,
                       lora3_gui.change, lora_scale_3_gui.change, lora4_gui.change, lora_scale_4_gui.change,
                       lora5_gui.change, lora_scale_5_gui.change, lora6_gui.change, lora_scale_6_gui.change,
                       lora7_gui.change, lora_scale_7_gui.change, prompt_syntax_gui.change],
            fn=update_loras,
            inputs=[prompt_gui, prompt_syntax_gui, lora1_gui, lora_scale_1_gui, lora2_gui, lora_scale_2_gui,
                     lora3_gui, lora_scale_3_gui, lora4_gui, lora_scale_4_gui, lora5_gui, lora_scale_5_gui,
                     lora6_gui, lora_scale_6_gui, lora7_gui, lora_scale_7_gui],
            outputs=[prompt_gui, lora1_gui, lora_scale_1_gui, lora1_info_gui, lora1_copy_gui, lora1_desc_gui,
                    lora2_gui, lora_scale_2_gui, lora2_info_gui, lora2_copy_gui, lora2_desc_gui,
                    lora3_gui, lora_scale_3_gui, lora3_info_gui, lora3_copy_gui, lora3_desc_gui, 
                    lora4_gui, lora_scale_4_gui, lora4_info_gui, lora4_copy_gui, lora4_desc_gui,
                    lora5_gui, lora_scale_5_gui, lora5_info_gui, lora5_copy_gui, lora5_desc_gui,
                    lora6_gui, lora_scale_6_gui, lora6_info_gui, lora6_copy_gui, lora6_desc_gui,
                    lora7_gui, lora_scale_7_gui, lora7_info_gui, lora7_copy_gui, lora7_desc_gui],
            queue=False,
            trigger_mode="once",
        )
        lora1_copy_gui.click(apply_lora_prompt, [prompt_gui, lora1_info_gui], [prompt_gui], queue=False)
        lora2_copy_gui.click(apply_lora_prompt, [prompt_gui, lora2_info_gui], [prompt_gui], queue=False)
        lora3_copy_gui.click(apply_lora_prompt, [prompt_gui, lora3_info_gui], [prompt_gui], queue=False)
        lora4_copy_gui.click(apply_lora_prompt, [prompt_gui, lora4_info_gui], [prompt_gui], queue=False)
        lora5_copy_gui.click(apply_lora_prompt, [prompt_gui, lora5_info_gui], [prompt_gui], queue=False)
        lora6_copy_gui.click(apply_lora_prompt, [prompt_gui, lora6_info_gui], [prompt_gui], queue=False)
        lora7_copy_gui.click(apply_lora_prompt, [prompt_gui, lora7_info_gui], [prompt_gui], queue=False)
        gr.on(
            triggers=[search_civitai_button_lora.click, search_civitai_query_lora.submit],
            fn=search_civitai_lora,
            inputs=[search_civitai_query_lora, search_civitai_basemodel_lora, search_civitai_sort_lora, search_civitai_period_lora,
                    search_civitai_tag_lora, search_civitai_user_lora, search_civitai_gallery_lora],
            outputs=[search_civitai_result_lora, search_civitai_desc_lora, search_civitai_button_lora, search_civitai_query_lora, search_civitai_gallery_lora],
            queue=True,
            scroll_to_output=True,
        )
        search_civitai_result_lora.change(select_civitai_lora, [search_civitai_result_lora], [text_lora, search_civitai_desc_lora], queue=False, scroll_to_output=True)
        search_civitai_gallery_lora.select(update_civitai_selection, None, [search_civitai_result_lora], queue=False, show_api=False)
        button_lora.click(get_my_lora, [text_lora, romanize_text], [lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui, lora6_gui, lora7_gui, new_lora_status], scroll_to_output=True)
        upload_button_lora.upload(upload_file_lora, [upload_button_lora], [file_output_lora, upload_button_lora]).success(
            move_file_lora, [file_output_lora], [lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui, lora6_gui, lora7_gui], scroll_to_output=True)

        use_textual_inversion_gui.change(set_textual_inversion_prompt, [use_textual_inversion_gui, prompt_gui, neg_prompt_gui, prompt_syntax_gui], [prompt_gui, neg_prompt_gui])

        generate_from_image_btn_gui.click(
            lambda: ("", "", ""), None, [series_dbt, character_dbt, prompt_gui], queue=False,
        ).success(
            predict_tags_wd,
            [input_image_gui, prompt_gui, image_algorithms, general_threshold_gui, character_threshold_gui],
            [series_dbt, character_dbt, prompt_gui, copy_button_dbt],
        ).success(
            compose_prompt_to_copy, [character_dbt, series_dbt, prompt_gui], [prompt_gui], queue=False,
        ).success(
            remove_specific_prompt, [prompt_gui, keep_tags_gui], [prompt_gui], queue=False,
        ).success(
            convert_danbooru_to_e621_prompt, [prompt_gui, tag_type_gui], [prompt_gui], queue=False,
        ).success(
            insert_recom_prompt, [prompt_gui, neg_prompt_gui, recom_prompt_gui], [prompt_gui, neg_prompt_gui], queue=False,
        )
        
        prompt_type_button.click(convert_danbooru_to_e621_prompt, [prompt_gui, prompt_type_gui], [prompt_gui], queue=False)
        random_character_gui.click(select_random_character, [series_dbt, character_dbt], [series_dbt, character_dbt], queue=False)
        generate_db_random_button.click(
            v2_random_prompt,
            [prompt_gui, series_dbt, character_dbt,
            rating_dbt, aspect_ratio_dbt, length_dbt, identity_dbt, ban_tags_dbt, model_name_dbt],
            [prompt_gui, series_dbt, character_dbt],
        ).success(
            convert_danbooru_to_e621_prompt, [prompt_gui, tag_type_gui], [prompt_gui], queue=False,
        )

        translate_prompt_button.click(translate_prompt, [prompt_gui], [prompt_gui], queue=False)
        translate_prompt_button.click(translate_prompt, [character_dbt], [character_dbt], queue=False)
        translate_prompt_button.click(translate_prompt, [series_dbt], [series_dbt], queue=False)

        generate_button.click(
            fn=insert_model_recom_prompt,
            inputs=[prompt_gui, neg_prompt_gui, model_name_gui, recom_prompt_gui],
            outputs=[prompt_gui, neg_prompt_gui],
            queue=False,
        ).success(
            fn=sd_gen.load_new_model,
            inputs=[
                model_name_gui,
                vae_model_gui,
                task_gui,
                controlnet_model_gui,
            ],
            outputs=[load_model_gui],
            queue=True,
            show_progress="minimal",
        ).success(
            fn=sd_gen_generate_pipeline,
            inputs=[
                prompt_gui,
                neg_prompt_gui,
                num_images_gui,
                steps_gui,
                cfg_gui,
                clip_skip_gui,
                seed_gui,
                lora1_gui,
                lora_scale_1_gui,
                lora2_gui,
                lora_scale_2_gui,
                lora3_gui,
                lora_scale_3_gui,
                lora4_gui,
                lora_scale_4_gui,
                lora5_gui,
                lora_scale_5_gui,
                lora6_gui,
                lora_scale_6_gui,
                lora7_gui,
                lora_scale_7_gui,
                sampler_gui,
                schedule_type_gui,
                schedule_prediction_type_gui,
                img_height_gui,
                img_width_gui,
                model_name_gui,
                vae_model_gui,
                task_gui,
                image_control,
                preprocessor_name_gui,
                preprocess_resolution_gui,
                image_resolution_gui,
                style_prompt_gui,
                style_json_gui,
                image_mask_gui,
                strength_gui,
                low_threshold_gui,
                high_threshold_gui,
                value_threshold_gui,
                distance_threshold_gui,
                recolor_gamma_correction_gui,
                tile_blur_sigma_gui,
                control_net_output_scaling_gui,
                control_net_start_threshold_gui,
                control_net_stop_threshold_gui,
                active_textual_inversion_gui,
                prompt_syntax_gui,
                upscaler_model_path_gui,
                upscaler_increases_size_gui,
                esrgan_tile_gui,
                esrgan_tile_overlap_gui,
                hires_steps_gui,
                hires_denoising_strength_gui,
                hires_sampler_gui,
                hires_prompt_gui,
                hires_negative_prompt_gui,
                hires_before_adetailer_gui,
                hires_after_adetailer_gui,
                hires_schedule_type_gui,
                hires_guidance_scale_gui,
                controlnet_model_gui,
                loop_generation_gui,
                leave_progress_bar_gui,
                disable_progress_bar_gui,
                image_previews_gui,
                display_images_gui,
                save_generated_images_gui,
                filename_pattern_gui,
                image_storage_location_gui,
                retain_compel_previous_load_gui,
                retain_detailfix_model_previous_load_gui,
                retain_hires_model_previous_load_gui,
                t2i_adapter_preprocessor_gui,
                adapter_conditioning_scale_gui,
                adapter_conditioning_factor_gui,
                xformers_memory_efficient_attention_gui,
                free_u_gui,
                generator_in_cpu_gui,
                adetailer_inpaint_only_gui,
                adetailer_verbose_gui,
                adetailer_sampler_gui,
                adetailer_active_a_gui,
                prompt_ad_a_gui,
                negative_prompt_ad_a_gui,
                strength_ad_a_gui,
                face_detector_ad_a_gui,
                person_detector_ad_a_gui,
                hand_detector_ad_a_gui,
                mask_dilation_a_gui,
                mask_blur_a_gui,
                mask_padding_a_gui,
                adetailer_active_b_gui,
                prompt_ad_b_gui,
                negative_prompt_ad_b_gui,
                strength_ad_b_gui,
                face_detector_ad_b_gui,
                person_detector_ad_b_gui,
                hand_detector_ad_b_gui,
                mask_dilation_b_gui,
                mask_blur_b_gui,
                mask_padding_b_gui,
                retain_task_cache_gui,
                guidance_rescale_gui,
                image_ip1,
                mask_ip1,
                model_ip1,
                mode_ip1,
                scale_ip1,
                image_ip2,
                mask_ip2,
                model_ip2,
                mode_ip2,
                scale_ip2,
                pag_scale_gui,
                load_lora_cpu_gui,
                verbose_info_gui,
                gpu_duration_gui,
            ],
            outputs=[load_model_gui, result_images, actual_task_info], 
            queue=True,
            show_progress="full",
        ).success(save_gallery_images, [result_images, model_name_gui], [result_images, result_images_files], queue=False, show_api=False)\
        .success(save_gallery_history, [result_images, result_images_files, history_gallery, history_files], [history_gallery, history_files], queue=False, show_api=False)

        with gr.Tab("Danbooru Tags Transformer with WD Tagger", render=True):
            with gr.Column(scale=2):
                with gr.Group():
                    input_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
                    with gr.Accordion(label="Advanced options", open=False):
                        general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
                        character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
                        input_tag_type = gr.Radio(label="Convert tags to", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
                        recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
                    image_algorithms = gr.CheckboxGroup(["Use WD Tagger"], label="Algorithms", value=["Use WD Tagger"], visible=False)
                    keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
                    generate_from_image_btn = gr.Button(value="GENERATE TAGS FROM IMAGE", size="lg", variant="primary")
                with gr.Group():
                    with gr.Row():
                        input_character = gr.Textbox(label="Character tags", placeholder="hatsune miku")
                        input_copyright = gr.Textbox(label="Copyright tags", placeholder="vocaloid")
                        pick_random_character = gr.Button(value="Random character 🎲", size="sm")
                    input_general = gr.TextArea(label="General tags", lines=4, placeholder="1girl, ...", value="")
                    input_tags_to_copy = gr.Textbox(value="", visible=False)
                    with gr.Row():
                        copy_input_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
                        copy_prompt_btn_input = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
                    translate_input_prompt_button = gr.Button(value="Translate prompt to English", size="sm", variant="secondary")
                    tag_type = gr.Radio(label="Output tag conversion", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="e621", visible=False)
                    input_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="explicit")
                    with gr.Accordion(label="Advanced options", open=False):
                        input_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square")
                        input_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="very_long")
                        input_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")                    
                        input_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
                        model_name = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
                        dummy_np = gr.Textbox(label="Negative prompt", value="", visible=False)
                        recom_animagine = gr.Textbox(label="Animagine reccomended prompt", value="Animagine", visible=False)
                        recom_pony = gr.Textbox(label="Pony reccomended prompt", value="Pony", visible=False)
                    generate_btn = gr.Button(value="GENERATE TAGS", size="lg", variant="primary")
                with gr.Row():
                    with gr.Group():
                        output_text = gr.TextArea(label="Output tags", interactive=False, show_copy_button=True)
                        with gr.Row():
                            copy_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
                            copy_prompt_btn = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
                    with gr.Group():
                        output_text_pony = gr.TextArea(label="Output tags (Pony e621 style)", interactive=False, show_copy_button=True)
                        with gr.Row():
                            copy_btn_pony = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
                            copy_prompt_btn_pony = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
                description_ui()

        translate_input_prompt_button.click(translate_prompt, inputs=[input_general], outputs=[input_general], queue=False)
        translate_input_prompt_button.click(translate_prompt, inputs=[input_character], outputs=[input_character], queue=False)
        translate_input_prompt_button.click(translate_prompt, inputs=[input_copyright], outputs=[input_copyright], queue=False)

        generate_from_image_btn.click(
            lambda: ("", "", ""), None, [input_copyright, input_character, input_general], queue=False,
        ).success(
            predict_tags_wd,
            [input_image, input_general, image_algorithms, general_threshold, character_threshold],
            [input_copyright, input_character, input_general, copy_input_btn],
        ).success(
            remove_specific_prompt, inputs=[input_general, keep_tags], outputs=[input_general], queue=False,
        ).success(
            convert_danbooru_to_e621_prompt, inputs=[input_general, input_tag_type], outputs=[input_general], queue=False,
        ).success(
            insert_recom_prompt, inputs=[input_general, dummy_np, recom_prompt], outputs=[input_general, dummy_np], queue=False,
        ).success(lambda: gr.update(interactive=True), None, [copy_prompt_btn_input], queue=False)
        copy_input_btn.click(compose_prompt_to_copy, inputs=[input_character, input_copyright, input_general], outputs=[input_tags_to_copy])\
            .success(gradio_copy_text, inputs=[input_tags_to_copy], js=COPY_ACTION_JS)
        copy_prompt_btn_input.click(compose_prompt_to_copy, inputs=[input_character, input_copyright, input_general], outputs=[input_tags_to_copy])\
            .success(gradio_copy_prompt, inputs=[input_tags_to_copy], outputs=[prompt_gui])
        
        pick_random_character.click(select_random_character, [input_copyright, input_character], [input_copyright, input_character])

        generate_btn.click(
            v2_upsampling_prompt,
            [model_name, input_copyright, input_character, input_general,
            input_rating, input_aspect_ratio, input_length, input_identity, input_ban_tags],
            [output_text],
        ).success(
            convert_danbooru_to_e621_prompt, inputs=[output_text, tag_type], outputs=[output_text_pony], queue=False,
        ).success(
            insert_recom_prompt, inputs=[output_text, dummy_np, recom_animagine], outputs=[output_text, dummy_np], queue=False,
        ).success(
            insert_recom_prompt, inputs=[output_text_pony, dummy_np, recom_pony], outputs=[output_text_pony, dummy_np], queue=False,
        ).success(lambda: (gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)),
                   None, [copy_btn, copy_btn_pony, copy_prompt_btn, copy_prompt_btn_pony], queue=False)
        copy_btn.click(gradio_copy_text, inputs=[output_text], js=COPY_ACTION_JS)
        copy_btn_pony.click(gradio_copy_text, inputs=[output_text_pony], js=COPY_ACTION_JS)
        copy_prompt_btn.click(gradio_copy_prompt, inputs=[output_text], outputs=[prompt_gui])
        copy_prompt_btn_pony.click(gradio_copy_prompt, inputs=[output_text_pony], outputs=[prompt_gui])

    gr.LoginButton()
    gr.DuplicateButton(value="Duplicate Space for private use (This demo does not work on CPU. Requires GPU Space)")

app.queue()
app.launch(show_error=True, debug=True) # allowed_paths=["./images/"], show_error=True, debug=True
## END MOD