File size: 4,746 Bytes
eec4bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import spaces
import gradio as gr
from stablepy import Preprocessor

PREPROCESSOR_TASKS_LIST = [
    "Canny",
    "Openpose",
    "DPT",
    "Midas",
    "ZoeDepth",
    "DepthAnything",
    "HED",
    "PidiNet",
    "TEED",
    "Lineart",
    "LineartAnime",
    "Anyline",
    "Lineart standard",
    "SegFormer",
    "UPerNet",
    "ContentShuffle",
    "Recolor",
    "Blur",
    "MLSD",
    "NormalBae",
]

preprocessor = Preprocessor()


def process_inputs(
    image,
    name,
    resolution,
    precessor_resolution,
    low_threshold,
    high_threshold,
    value_threshod,
    distance_threshold,
    recolor_mode,
    recolor_gamma_correction,
    blur_k_size,
    pre_openpose_extra,
    hed_scribble,
    pre_pidinet_safe,
    pre_lineart_coarse,
    use_cuda,
):
    if not image:
        raise ValueError("To use this, simply upload an image.")

    preprocessor.load(name, False)

    params = dict(
        image_resolution=resolution,
        detect_resolution=precessor_resolution,
        low_threshold=low_threshold,
        high_threshold=high_threshold,
        thr_v=value_threshod,
        thr_d=distance_threshold,
        mode=recolor_mode,
        gamma_correction=recolor_gamma_correction,
        blur_sigma=blur_k_size,
        hand_and_face=pre_openpose_extra,
        scribble=hed_scribble,
        safe=pre_pidinet_safe,
        coarse=pre_lineart_coarse,
    )

    if use_cuda:
        @spaces.GPU(duration=15)
        def wrapped_func():
            preprocessor.to("cuda")
            return preprocessor(image, **params)
        return wrapped_func()

    return preprocessor(image, **params)


def preprocessor_tab():
    with gr.Row():
        with gr.Column():
            pre_image = gr.Image(label="Image", type="pil", sources=["upload"])
            pre_options = gr.Dropdown(label="Preprocessor", choices=PREPROCESSOR_TASKS_LIST, value=PREPROCESSOR_TASKS_LIST[0])
            pre_img_resolution = gr.Slider(
                minimum=64, maximum=4096, step=64, value=1024, label="Image Resolution",
                info="The maximum proportional size of the generated image based on the uploaded image."
            )
            pre_start = gr.Button(value="PROCESS IMAGE", variant="primary")
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Column():
                    pre_processor_resolution = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocessor Resolution")
                    pre_low_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="'CANNY' low threshold")
                    pre_high_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="'CANNY' high threshold")
                    pre_value_threshold = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="'MLSD' Hough value threshold")
                    pre_distance_threshold = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="'MLSD' Hough distance threshold")
                    pre_recolor_mode = gr.Dropdown(label="'RECOLOR' mode", choices=["luminance", "intensity"], value="luminance")
                    pre_recolor_gamma_correction = gr.Number(minimum=0., maximum=25., value=1., step=0.001, label="'RECOLOR' gamma correction")
                    pre_blur_k_size = gr.Number(minimum=0, maximum=100, value=9, step=1, label="'BLUR' sigma")
                    pre_openpose_extra = gr.Checkbox(value=True, label="'OPENPOSE' face and hand")
                    pre_hed_scribble = gr.Checkbox(value=False, label="'HED' scribble")
                    pre_pidinet_safe = gr.Checkbox(value=False, label="'PIDINET' safe")
                    pre_lineart_coarse = gr.Checkbox(value=False, label="'LINEART' coarse")
                    pre_use_cuda = gr.Checkbox(value=False, label="Use CUDA")

        with gr.Column():
            pre_result = gr.Image(label="Result", type="pil", interactive=False, format="png")

            pre_start.click(
                fn=process_inputs,
                inputs=[
                    pre_image,
                    pre_options,
                    pre_img_resolution,
                    pre_processor_resolution,
                    pre_low_threshold,
                    pre_high_threshold,
                    pre_value_threshold,
                    pre_distance_threshold,
                    pre_recolor_mode,
                    pre_recolor_gamma_correction,
                    pre_blur_k_size,
                    pre_openpose_extra,
                    pre_hed_scribble,
                    pre_pidinet_safe,
                    pre_lineart_coarse,
                    pre_use_cuda,
                ],
                outputs=[pre_result],
            )